DOC / NOAA / OAR
National Severe Storms Laboratory

2021 NSSL Science Review
Observations and Analysis

Part I of Fieldwork and Analysis Overview
Erik Rasmussen, NSSL Research Scientist, FOFS



NSSL mission: Conduct fundamental research to
advance our understanding of processes associated
with severe convective storms

Idealized Models
/ Routine
<\ __Observations

We use a variety of
tools and synergistic
approaches to
generate new
knowledge...

Field
Observations ’ Forecast Models
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Field Research Leadership

* NSSL scientists continue the tradition of leadership roles on field
projects related to our mission.

* We design and improve instruments, deploy them, and use the data
in internal and collaborative research.
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Introductions

2. Storm
Electrification and
Microphysics

1. Tornadoes

Dr. Erik Rasmussen Dr. Vanna Chmielewski

3. Precipitation | f_
and Flooding

Dr. J. J. Gourley
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DOC / NOAA / OAR

National Severe Storms Laboratory
2021 NSSL Science Review

Field Work and Analysis

Tornadoes

Presented by Erik Rasmussen, Research
Scientist, FOFS
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What WeAdo In tornado field work...
don’t
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What we do in tornado field work...

* Develop hypotheses
* Detailed plans
* Multiple platforms with collaborative coordination @ -
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Low-level inflow through the
forward flank acquires more
spin

What were initial environmental conditions?
What is role of precipitation?

Air turns toward updraft in a

“streamwise vorticity current”

What is role of rain/hail/cooling?
How much spin is generated?

Air turns abruptly upward into

the tornado cyclone

What is role of the rear-flank downdraft?
How intense must the low-level updraft be?
Can the spin-containing air “miss” the low-
level updraft?




Recent accomplishments: TORUS

Target Observations using Radar and UAS in Supercells... 2019,
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Program to understand the out-
sized impacts of tornadoes in the
Southeast US

Led by NSSL, involving a large
number of universities and
investigators

Ongoing small field projects 2015-
2019 (then COVID)

NSSL scientist Conrad Ziegler led
radar missions on NOAA hurricane
hunter aircraft

Data combined with ground-based
Doppler radars
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Plans: PERILS (2022, 2023

Propagation, Evolution, and Rotation in Linear Storms
A major fleld program of NOAA/VORTEX SE and
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Observations and Understanding

Fieldwork and Analysis: Storm Electrification
and Microphysics

Vanna Chmielewski, Ph.D., CIWRO Research Scientist, WRDD
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Recent efforts include testing new
observation platforms and analysis
techniques

(MacGorman et al. 2017, Ortega and Waugh 2020)



https://www.commerce.gov/
http://www.noaa.gov/

B
1
.
R
ol
&
%
&

Summarized Efforts

NSSL has a history of innovative electrification
and microphysical field studies improving
electrification understanding.

ALTITUDE (km)

- Seminal observations of thunderstorm
electrical structures - important for
understanding cloud-to-ground flashes.

- Key analyses of lightning’s relationships to
storm properties - important for
understanding the use of lightning data.

Electrification is dependent on microphysical
processes, especially in hail-growth zones. There
are still many uncertainties and limited validation
datasets. S

Recent efforts include testing new observation .
platforms and analysis techniques

(MacGorman et al. 2017, Ortega and Waugh 2020)
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Study of Storm Processes

Radar-observed precipitation mix Electrification ingredients (g/kg) Ingredients along balloon path
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Radar-based analysis of 4D cloud properties used to retrieve fields which cannot be directly
radar-observed throughout the storm volume or along a path.

— Sub-freezing cloud liquid supports important graupel-ice electrification in the Mesoscale Convective
System (MCS)

(Ziegler 2013a,b; DiGangi et al. 2016; Miller, Ziegler, Biggerstaff 2020)
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PASIV-imaged precipitation particles

In-Situ Analyses

Observations of precipitation particles and
electric fields from balloon-borne instruments
(PASIV and EFM).
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Extensions from rich datasets _1ooo con

- Electrlflcat!on is mﬂgenced by cloud 5 Flash channel
condensation nuclei (CCN) that seed droplets E ~ in negative
T . . . . < charge
- lce precipitation particle histories result in
distinct lightning structures gl Y , : ,
. . . . . -15 -10 -5 0 5 10 15
- Storm air motions contribute to lightning Horizontal Distance (km) \ Flash channel in

production positive charge

0036 UTC

- Production of oxidants by lightning is higher
than expected

- Relationships applied to other storm modes
such as hurricanes
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Chmielewski et al. 2021, MacGorman et al. 2017, Brune et al. Radar reflectivity, lightning channel polarity, and temperature
2021) in cross sections of a high precipitation supercell
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Ongoing studies of hail growth
and fall
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Collaborators and Future Work

Upcoming field studies
TORUS
PERILS / VORTEX-SE

- Investigate links between cloud
particles, lightning, and cold pool
evolution

- Optimize dataset differences for
operational use

Storm processes field
studies in development

- Stratiform cloud
electrification (MILLS)

- Snow electrification
(LEE)

- Summer Monsoon
(CREST/TOPO)

Georgia
Tech [nstirte
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Observations and Understanding

Fieldwork and Analysis: Unique observations
of rainfall and hydrologic responses

Jonathan J. Gourley PhD, NSSL Research Hydrologist, WRDD




Summary

® After a wildfire has been contained, the
threat of a natural hazard is not over!

® Burn scars are often situated in
complex terrain, which challenges low-
level surveillance by NEXRAD

¢ Quantitative observations of flash floods
and debris flows are rare relative to
other severe weather phenomena

o

Field experiments have been conducted
to collect unique observations of rainfall
and hydrologic responses using NOXP
mobile weather radar and stream
radars, a new observing facility for
NSSL
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Relevance to NSSL Mission

Mobile weather radar data are transmitted in
real time using cellular communications and
images are made available to NWS forecast
offices to improve situation awareness

Q=vA

24 GHz 26 GHz
Stage height (h
Stream velocity (v)

Fourteen K-band stream radars have been
deployed on burn scars and above streams
that have a history of posing a flash flooding
threat to downstream communities

Cross-sectional
area (A)

Insights are incorporated into future versions
of Flooded Locations and Simulated
Hydrographs  (FLASH) software, thus
providing improved operational tools for NWS
forecasters

Effort directly contributes to GSC 3: Reliably
predict flash flooding




Goals and Accomplishments ()

Burn scars provide a unique research
opportunity to collect rainfall-runoff behavior
for extreme hydrologic events

A rarely observed phase sequencing
between surface velocity and stage occurred
with a major flash flooding event, validating
theoretical results

Rise in surface velocity led the stage by ~30
min, providing an early indication of an
impending event

Time series of surface velocity now regarded
as a valuable indicator of a major flash
flooding signature

Analytic solution
(Muste et al. 2020)

Stream Radar observation

—Stage
----Velocity

Arbitary scale

Unsteady flow condition  osemmewro
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s “e?y,- 28 a e L

Flash flood reached the height of the stream radar and debris damaged the
cables
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Goals and Accomplishments (ll)

\ Spring Creek Experimental Burn Scar Indian Creek (USGS)
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® In collaboraton with the USGS and State of CO, deployed a Post Wildfire
Hydrometeorological Observatory on the Spring Creek burn scar in Colorado from 2019-2021

®  Most comprehensively instrumented burn scar to date

o

Instruments show surface velocity response in stream closely following peak in rainfall rates




Goalsand Accompllshments (111)

Radar observations
indicated very heavy
rainfall, mixed with
hail that triggered a
debris flow

Moist easterly inflow
maintained above low-
level outflow

® NOXP radar observations near storms over burn scar reveal kinematic and
microphysical signatures of storms triggering debris flows

®  Mid-level inflow enhanced rainfall rates and enabled storms to persist longer by
sustaining updrafts




Future Work

_ _ 20190722/2330
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