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1. Introduction 

The Radar Operations Center (ROC) of the National Weather Service (NWS) has funded 

the National Severe Storms Laboratory (NSSL) to address the mitigation of range and 

velocity ambiguities in the WSR-88D. This is the ninth report in the series that deals with 

range-velocity ambiguity resolution in the WSR-88D (all reports are listed at the end). It 

documents NSSL accomplishments in FY05.  

We start in section 2 with a brief description of the only one data set which we have 

collected. In previous years we have accumulated a large number of data cases. These are 

listed on our website (http://cimms.ou.edu/rvamb/Mitigation_R_V_Ambiguities.htm) and 

some have not yet been analyzed.  

Detail explanation of the spectral filter for the staggered PRT is in section 3 and the 

functional description is in the appendix B. Other issues of the staggered PRT are also 

investigated in this section. Thus the choice of PRTs and the recovery of reflectivity for 

different overlay scenarios are presented as well as a summary of spectral moment 

estimators. 

The bulk of effort in testing and evolving the SZ-2 algorithm is in section 4. Significant 

changes were required to accommodate the case of operator defined regions for clutter 
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filtering. This issue was overlooked in the previously submitted algorithm and it required 

much investigations, simulations, and testing. An interim report was submitted to the 

ROC on July of 2005 addressing these changes. Testing of double processing of two 

overlaid echoes is also in section 4. That is, the strong and week echoes are processed 

twice; once by cohering the strong one, filtering it and cohering the week and the second 

time by cohering the week, filtering it and recohering the stronger one.  

We would like to bring to your attention that the work performed in FY05 exceeded 

considerably the allocated budget hence a part of it had to be done on other NOAA funds.  
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2. Data Collection 

Due to the numerous data cases collected in previous years and other projects competing 

for radar time, data collection during FY05 was limited to just one case. A case of a snow 

storm with uniform widespread reflectivity was collected on Jan 28, 2005 using VCPs 

2048 and 2049. In both cases the research RDA (RRDA) recorded oversampled, dual-pol 

time series data. The system configuration and a detailed description of the VCPs are 

included in last year’s report (report 8). 
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3. Staggered PRT 

The staggered PRT technique has described in detail in previous reports of this series 

(e.g., see report 3) and in numerous papers in the literature. The main advantage of the 

Staggered PRT is that the maximum unambiguous velocity can be extended by means of 

a simple algorithm (see report 8); therefore, longer PRTs can be used to reduce the 

likelihood of overlaid echoes. In the past, this technique has been dismissed because it 

does not lead naturally to spectral processing and efficient ground clutter filters are 

difficult to design, rarely performing at par with existing filters that operate on uniform 

PRTs. These limitations have been overcome, and in this report, we describe an effective 

spectral ground clutter filter and a method to perform spectral analysis, both compatible 

with the staggered PRT technique. Another focus of this year’s work has been in 

designing a suitable PRT scheme that can replace the Batch Mode in legacy volume 

coverage patterns (VCPs). Finally we present a scheme to recover the reflectivity for 

different overlay scenarios. We start with a much more detailed description of ground 

clutter filter than what was documented in report 3. Further, a complimentary explanation 

of the filter is included in the Appendix A and functional description is in Appendix B.  

3.1. Clutter filtering and bias correction for staggered PRT: a re-visit. 

A spectral clutter filtering procedure for staggered PRT was developed in report 3. This 

filter eliminates all the velocity drop-out bands observed in earlier clutter filtering 

methods. With this algorithm, it is practical to implement the staggered PRT scheme on 

operational radars to extend the maximum unambiguous velocity. While this method 

eliminates the velocity drop-out problem completely (although under certain conditions 
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which can be easily met), the bias error in the velocity around zero is more or less the 

same as in any uniform PRT processing. This problem is addressed in section 3.1.2, and 

the conclusions drawn from that study are applicable here.  

The description of the ground clutter filtering algorithm in report 3 is somewhat concise, 

and we felt that a more detailed explanation would be useful in understanding the method 

and in coding the procedure on a computer. Hence, we explain the method in greater 

detail below before we embark on testing the algorithm on real radar data from KOUN. 

We start with a brief explanation of the staggered PRT transmission scheme, and the 

spectral signal spectrum reconstruction. Next, we explain a few mathematical concepts 

useful in understanding the clutter filtering method, and finally elaborate on the clutter 

filtering method itself in greater detail. The mathematical symbols and notations used are 

the same as in the report 3. 

3.1.1. The staggered PRT transmission scheme 

In the staggered PRT scheme two different pulse spacings, T1 and T2, (T1 < T2) are used 

alternately. Then, alternate pairs of samples are used to compute the autocorrelation 

estimates R1 at lag T1, and R2 at lag T2. In one of the methods, the velocity is estimated 

from the phase difference between the two using the formula, 

 v = λ arg(R1R2*)/{4π(T2-T1)} (3.1) 

In an alternative method, the velocity is determined from the phase of R1, and then the 

ambiguity is resolved using the phase of R2 (see report 8 for details). The difference PRT 
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(T2 – T1) determines the unambiguous velocity va, and the unambiguous range ra is 

determined by T1 

 va = λ/[4(T2-T1)]; T1 < T2 (3.2) 

 ra = cT1/2 (3.3) 

This, of course, assumes that T1 is selected such that there are no echoes beyond ra, 

hence, there are no overlaid echoes.  

In the absence of the ground clutter, the spectral processing to extract the spectral 

moments proceeds by reconstructing the signal spectrum as if it is sampled at intervals Tu 

= (T2-T1). This puts a small restriction on the selection of T1 and T2. They should be 

integer multiples of the difference Tu, so that T1 = n1Tu, and T2 = n2Tu, where n1 and n2 are 

integers. The best choice, as discussed in report 3, is n1 = 2, and n2 = 3, or the stagger 

ratio κ = T1/T2 = 2/3. Once this condition is satisfied, we can generate a uniform time 

series, vi, i = 1, 2, 3, …, N, (signal sampled at intervals Tu) from the staggered PRT 

sequence by inserting zeros in the place of missing samples. For κ = 2/3, we have only 

the 1st and 3rd samples available in each set of 5 samples. We call this the derived time 

series. Now, we can write the derived time series, vi, i = 1, 2, 3, …, N, as a product of 

sequences c and e, where e is the signal time series sampled at Tu intervals, and ci, i =1, 2, 

3, …, N, is a code sequence of zeros and ones given by c = [1010010100…etc.] for κ = 

2/3. 

 vi = ci ei ; i = 1, 2, 3, …, N. (3.4)  
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If there are M staggered PRT samples, we have N = M (n1+n2)/2 samples in the derived 

time series. The DFT spectrum of v is a convolution of the spectra of c and e  

 DFT(v) = DFT(c)  DFT(e) , (3.5) 

where the symbol  represents the convolution operation, and the DFT( ) represents the 

discrete Fourier transform of the sequence in parenthesis. We use capital letters to denote 

DFT coefficients of the corresponding time domain quantities in lower case letters, and 

capital bold face letters to denote matrices or vectors. The subscript ‘i’ is used for time 

domain quantities and the subscript ‘k’ is used for spectral domain coefficients. For 

example Ek is the kth spectral coefficient of DFT(e), and E is the column matrix of 

coefficients Ek , k = 1, 2, 3, …, N. In the matrix notation, Eq. (3.5) can be written as  

 V = C E. (3.6)  

V and E are (Nx1) column matrices and C is the (NxN) convolution matrix whose 

columns are cyclically shifted versions of the DFT(c). The convolution matrix is formed 

from the spectrum of the code sequence as follows: (a) Form a matrix with first row as 

the DFT(c), the second row is the same coefficients cyclically shifted right by one 

coefficient, 3rd row is same spectrum shifted right by two coefficients, and so on till the 

last row. This forms an NxN matrix. (b) Take the complex conjugate transpose of this 

matrix to get the convolution matrix, C. (c) Normalize the matrix. To preserve the power 

in the spectrum the columns of the convolution matrix are normalized such that each one 

is a unit vector (i.e., the norm of each column vector is unity). Note that normalizing the 

columns also normalizes the row vectors of C automatically.  
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The convolution matrix is singular (its rank is M), hence we cannot solve for E, but we 

can get the magnitudes without the phases under certain criterion explained below. If we 

discard the phases of C, the convolution matrix becomes non-singular and hence can be 

inverted. Further, we note that it is sufficient to recover the magnitude spectra of the 

weather signal to recover the spectral moments; the phases are not needed. Hence, we 

discard the phases of all the three matrices in (3.6) and write abs{V} = abs{C} abs{E} 

which is valid under the “narrow” spectrum condition. The spectrum is considered 

“narrow” if the spectral spread of the weather signal is less than N/(n1+n2) coefficients. 

Because the staggered PRT scheme can be designed to have a large unambiguous 

velocity, va, this condition can be nearly met for most of the weather signals. In general, 

abs{V} ≠ abs{C}abs{E} because of the complex addition process, however, under the 

“narrow” spectra condition, the complex addition does not take place, hence we can 

replace the inequality sign with the equality sign. Note that each row of C has only five 

non-zero coefficients spaced M/2 coefficients apart, and if E has only M/2 contiguous 

non-zero coefficients, the product of E and each row of C results in only one non-zero 

term, hence, no complex addition takes place in the convolution operation. Therefore, we 

can recover abs{E} from the inverse operation 

 abs{E} = abs([abs{C}]-1 abs{V}) (3.7)  

We refer to the operation indicated in (3.7) as the “magnitude deconvolution”. The 

recovery of the magnitude spectrum is exact under the “narrow” spectrum condition. If 

the spread of the spectral coefficients is more than N/(n1+n2), the reconstruction is not 

exact; however, the velocity estimate is not biased by this non-ideal reconstruction; only 
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the variance is affected. The spectrum width bias is removed by eliminating the residual 

coefficients outside an interval 2N/(n1+n2) centered on the estimated mean velocity. 

This is a brief description of the staggered PRT processing in the DFT domain without 

the clutter filter. Details about the spectral moment estimation and the simulation results 

are available in report 3. It may also be noted that this procedure gives spectral parameter 

estimates of more or less the same quality as the pulse pair algorithm; hence, the pulse 

pair algorithm is recommended whenever the ground clutter is not present in the time 

series. The DFT domain method is to be used in conjunction with the clutter filtering 

procedure.  

3.1.2. Clutter filtering procedure 

Before we explain the clutter filtering procedure, it is useful to refresh a couple of 

mathematical concepts from the functional analysis that are helpful in understanding the 

clutter filtering procedure. The concepts of interest here are the inner product, norm, and 

the linear independence. If f(x) and g(x) are two functions defined over a ≤ x ≤ b , then 

one of the ways of defining the inner product between the two functions, symbolically 

written as < f, g > , is 

 , (3.8) ∫>=<
b

a

dxxgxfgf )(*)(,

and with respect to this inner product definition the norm of a function f(x) is defined as  

 
2/1

)(*)( ⎥
⎦

⎤
⎢
⎣

⎡
= ∫

b

a

dxxfxff . (3.9) 

10 



Further, if the norm of a function is unity we call it a normalized function. A function can 

be normalized by dividing the function by its norm. If the inner product between two 

functions is zero, we call these functions orthogonal to each other. If in (3.8) f(x) is a 

normalized function, then the inner product < f, g > gives the complex amplitude of f 

present in g. If we subtract this part from g, what remains is orthogonal to the function f. 

(i.e., [g - < f, g>f ] is orthogonal to f ). 

These concepts extended to matrices take the form of matrix multiplication and 

summation in place of the integration. For example, if F and G are column matrices with 

N components each, (i.e., F = [f1, f2, f3, …, fN]T and G = [g1, g2, g3, …, gN]T ) then the 

inner product is a scalar given by the product 

 , (3.10) 
1

*
N

T
i

i
f gχ

=

= = ∑*F G i

and the norm of the column matrix F is (the superscript ‘T*’ represents complex conjugate 

transpose of the matrix, and ‘*’ represents the complex conjugate) 

 1/ 2 1/ 2

1
[ ] [ * ]

N
T

i i
i

f f
=

= = ∑*F F F . (3.11) 

If the norm of a matrix is unity it is like a unit vector of the vector analysis. Two column 

matrices are said to be orthogonal if their inner product is zero. If F is a normalized 

matrix then the inner product χ of (3.10) is the amplitude of F present in G, or the 

component of G in the direction F. It is common practice to use the term vector in place 

of the column matrix, because there is much in common with the matrix analysis and the 

vector analysis. The vector analysis is developed for a 3-dimensional space, and the 
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matrix analysis is a generalization of these concepts to N dimensions. It is useful to 

compare the vector analysis concepts with matrix operations delineated above because 

we can visualize the vector operations easily.  

−5 0 5
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−1

0

1

2

3

4

5
vector A

vector B

[(A.b)b]

(unit vector along B)
b

θ

[A−(A.b)b]

(component
of A along B)

(component of A
orthogonal to B)

 

Fig. 3.1. Illustration of the vector dot product. 

For simplicity of explanation, consider a 2-dimensional space, i.e., vectors having only x 

and y components (x and y are unit vectors along x and y directions in a Cartesian 

coordinate system). The inner product is the same as the dot product between two 

vectors. If A and B are two vectors (Fig. 3.1) given in terms of the Cartesian components 

as A = Axx + Ayy, and B = Bxx + Byy, then A•B = Ax Bx + Ay By = |A| |B| cos(θ) is the dot 

product between the vectors (θ is the angle between the vectors A and B). The magnitude 

(or the norm) of the vector B can be obtained as ||B|| = sqrt(B•B). If b = B/||B|| is a unit 

vector along B, then the dot product, (A•b), gives the magnitude of the component of A 
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in the direction of B, or the projection of A onto B. If θ = 90º, then the vectors are 

orthogonal and the dot product is zero. The vector (A•b)b is the component of A along 

the direction B, and if we subtract this component from A, the resulting vector C = {A – 

(A•b)b} is the component of A orthogonal to B.  

With the above concepts in mind, we proceed to explain the clutter filtering procedure for 

the staggered PRT sequence. The method is applicable to any stagger ratio provided n1 

and n2 are integers, but here and in all the subsequent discussions we use κ =2/3. We use 

symbol M for the number of staggered PRT samples and N = M (n1+n2)/2 for the number 

of DFT points in the derived time series with inserted zeros. We start with (3.6) which is 

reproduced below for convenience.  

 V = C E.  (3.12) 

In this equation, V is the spectrum of the derived time series, and E is the unknown 

spectrum we are trying to recover. Here we assume that the weather signal and the 

ground clutter are present in the time series. To contain the spread of the clutter power 

around zero Doppler, we need to multiply the time series by the window weights. It is 

assumed that the window is included in the spectrum V. Now, if we examine the 

convolution matrix, we find that each row (the first column of C is the spectrum of the 

code sequence c, and the rest are shifted versions of the same) has only five non-zero 

coefficients (for κ =2/3) spaced M/2 coefficients apart. For example, with M = 64 (N = 

160), of the 160 coefficients of DFT{c} = [C1, C2, C3, …, C160] only C1, C33, C65, C97, 

and C128 are non-zero. In terms of these DFT coefficients the convolution matrix will 

have its first row as [C1, C160, C159, C158, …, C2], the second row as [C2, C1, C160, C159, 
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C158, …, C3], which is 1st row right shifted by one element cyclically, and so on. The first 

row has non-zero coefficients at column numbers 1, 33, 65, 97, and 129, and the DFT 

coefficients of the code sequence in these positions are C1, C129, C97, C65, and C33. In the 

second row these same coefficients would shift to columns 2, 34, 66, 98, 130. Thus, after 

the convolution operation indicated by the matrix multiplication in (3.12), the first and 

second elements V1 and V2 of the matrix V would be a weighted sum of the elements  

 V1 = C1 E1 + C129 E33 + C97 E65 + C65 E97 + C33 E129, 

 V2 = C1 E2 + C129 E34 + C97 E66 + C65 E98 + C33 E130. (3.13) 

Similarly, we can write equations for all the 160 elements. Since each row of C is 

obtained by right shifting the elements of the previous row cyclically; all the coefficients 

are the same in the first 32 equations, and the next 32 equations the coefficients would be 

right shifted by one, i.e., C33, C1, C129, C97, and C65. Similarly, for every 32 equations, the 

coefficients right-shift by one, and there are five such sets. Therefore, we can rearrange 

the convolution matrix as a 5x5 matrix Cr, and E and V are rearranged row-wise as 5x32 

matrices, Er and Vr respectively (e.g., the 1st row of Vr has V1 to V32, second row V33 to 

V64, etc.). Equation (3.12) then becomes 

 Vr = Cr Er,  (3.14) 

where the subscript ‘r’ represents re-arranged matrix. Cr can be obtained from C by 

deleting first all rows containing zero in the first column of C, and then deleting all 

columns containing zero in the first row, which reduces it to a 5x5 matrix. (Note: The 

five non-zero spectral coefficients of C can also be obtained from a code vector of length 
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5, [10100], taking its DFT, and normalizing the power in the spectrum.) The matrix Cr is 

also singular (its rank is 2), and its columns are normalized such that each column is a 

unit vector (row vectors are normalized automatically). The three matrices in (3.14) are 

shown below in terms of the DFT coefficients (subscript is the DFT coefficient number). 

  (3.15) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
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⎥
⎥
⎥
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⎦
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⎢
⎢
⎢
⎢
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⎣
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1291336597
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rC

Now consider a situation in which both the signal and the clutter are present in the 

spectrum. We select the following parameters to generate simulated spectra shown in Fig. 

3.2:  

• Weather signal: mean velocity 38 m s-1, spectrum width = 3 m s-1, 

• Clutter signal: clutter-to-signal ratio (CSR) = 10 dB, mean velocity = 0 m s-1, 
spectrum width = 0.28 m s-1, 

• The signal-to-noise ratio (SNR) is > 30 dB.  
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The spectra are shown in terms of the DFT coefficient magnitudes versus coefficient 

number along the x-axis. The radar parameters are: frequency 3 GHz (λ = 10 cm), 

maximum unambiguous velocity va = 50 m s-1. Note that the velocity along the x-axis is 

{0 to -50; +50 to 0.625} m s-1 (in steps of 0.625 m s-1) corresponding to the DFT 

coefficients numbers {1 to 80; 80 to 160}. The first spectrum (Fig. 3.2a) is that of the 

signal alone, and the second (Fig. 3.2b) is that of the signal plus the clutter. This is the 

vector E of (3.12) which we are trying to recover from the vector V shown in Fig. 3.2d. 

The vector V is the spectrum of the staggered PRT sequence obtained after converting the 

time series into a uniform sequence by inserting zeros in places of missing samples, or 

the spectrum after convolving E with the code spectrum. Fig. 3.2c is the spectrum of the 

signal alone in the staggered PRT sequence in the absence of the clutter. Note that the 

clutter and the weather signal have 5 weighted replicas in the spectrum because of the 

convolution with the code spectrum which has only five non-zero coefficients.  

The next figure (Fig. 3.3) shows the two re-arranged matrices Vr and Er. The 160 

coefficients of the spectra are arranged row-wise into 5x32 size matrices. In fact, (3.12) is 

a compact representation of the 32 independent equations, one for each column of Vr. 

The first column of Vr is related to the first column of Er via the transformation matrix 

Cr, and 2nd column of Vr to the 2nd column of Er, and so on. Therefore, it is sufficient to 

consider one such equation to demonstrate the clutter filtering procedure. Let us take the 

equation corresponding to the first column of the Vr.  
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   (3.18) 
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Fig. 3.2. Illustration of the staggered PRT signal spectra. 
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Referring to Fig. 3.2b, E has clutter in the first few and last few coefficients; the signal is 

centered on the mean velocity. When this is rearranged, the clutter is in the first few 

coefficients in the first row and last few coefficients in the last row. The signal 

coefficients are spread, at most, over two rows if the “narrow” spectrum criterion is 

satisfied. Therefore, in each column of Er, at most two elements are non-zero. In the 

example given in Fig. 3.3, we see that E1 (clutter coefficient) and E97 (signal coefficient) 

are non zero in the first column. In general, we know that the clutter is in the first 

coefficient (ground clutter has zero velocity) in the first few columns (last coefficients in 

the last few columns), and the signal can be in any one of the five coefficients. After the 

transformation via the matrix Cr, powers in these two coefficients spread to all the 

elements of the first column of Vr on the left hand side of the equation. For simplicity, let 

us write the transformation matrix Cr in terms of its column vectors and number them as 

C1 to C5. With this modification the (3.18) would be rewritten as  

  (3.19) [
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V

54321 CCCCC ]

where vectors C1 to C5 are the columns of the matrix Cr. Note that the vectors C1 to C5 

are pair-wise linearly independent, i.e., the magnitude of the inner product between any 

two vectors is less than unity. With E33, E65, and E129 being zero, we can reduce the 

equation to  

 V1 = C1 E1 + C4 E97, (3.20)  
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where vector V1 on the left hand side is the first column of Vr. This is an over determined 

system with two unknowns and 5 equations. Only two of these equations are sufficient to 

solve for the unknowns E1 and E97, other three equations happen to be dependent 

equations (rank of Cr is 2). However, in practice we know only the position of the clutter 

coefficient, but not that of the signal.  
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Fig. 3.3. Illustration of the staggered PRT clutter filtering procedure. 
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Now, the vector V1 is a sum of the clutter coefficient, E1 times the vector C1, plus the 

signal coefficient E97 times the vector C4. Therefore, to filter the clutter we take the 

component of V1 along the direction C1 and subtract it from V1. This is accomplished by 

taking the inner product between C1 and V1 to get the amplitude of the component, 

multiply this by C1, and then subtract it from V1.  

  Vf1 = V1 – (C1
T* V1) C1 , (3.21) 

where Vf1 is the residual vector after clutter is filtered. Substituting for V1 from (3.20) we 

get 

 Vf1 = {C1 E1 + C4 E97}– {C1
T* (C1 E1 + C4 E97)}C1 .   

  = C4 E97 - {C1
T* C4 E97}C1 

  = C4 E97 - (C1
T* C4)C1}E97   

  = {C4 - (C1
T* C4)C1}E97. (3.23) 

Note that the first term of (3.20) (the clutter vector present in V1) is completely removed, 

and the C1 component of the signal vector is also filtered. Since the vectors C1 and C4 are 

not collinear (the vectors C1 to C5 are pair-wise linearly independent) the complex 

multiplier, {C4 - (C1
T* C4)C1} ≠ {0}, except when the signal also happens to be in the 

first coefficient (i.e., the clutter and signal are in E1). In such a case (3.20) would have 

only the first term, and all the vectors in the R.H.S. of (3.23) are C1. 

It is easy to see that we can recover the original complex amplitude of the signal 

coefficient, E97 in (3.20) by dividing the 4th element of Vf1 by the 4th element of {C4 - 
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(C1
T* C4)C1}, but again, only if we know the position of the signal in the spectrum. 

Hence, the signal cannot be restored at this stage. This lost part of the signal produces a 

small bias in the spectral moment estimates. We shall come back to this shortly while 

explaining the bias removal. Note that the clutter is completely removed, but the signal is 

partially removed by the clutter filter as long as the signal and clutter are not in the same 

coefficient.  

Since the clutter is present in the first few and the last few columns of Er, we apply this 

procedure only to those columns in which the clutter is present (the extent shown in 

dotted lines in Fig. 3.3). Depending on the clutter filter width, nc, in terms of the DFT 

coefficients, the ground clutter filtering procedure described above is applied to the first q 

columns and the last (q-1) columns (nc = 2q-1). In the last columns the clutter coefficient 

is in the last row, hence, in (3.23) we need to replace the vector C1 by the vector C5 while 

applying the clutter filter to these columns. For example, the clutter filtering equation 

corresponding to the last column (32nd
 column) would be  

 Vf32 = V32 – (C5
T* V32) C5. (3.24) 

After the clutter is filtered using this process, we apply the magnitude deconvolution, 

which also can be carried out using the rearranged matrices. First, take only the 

magnitude matrices by discarding the phases, and then pre-multiply both sides by the 

inverse of abs{Cr}. Again let us take one column, Vf1 of (3.23). After the magnitude 

deconvolution we get 

  abs(Er1) = abs([abs{Cr}]-1 abs{Vf1}) 
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 = abs( [abs{Cr}]-1 abs[{C4 - (C1
t* C4)C1}E97 ] ), (3.25) 

Interestingly, all the coefficients of the resulting vector, abs(Er1), have same amplitude, 

because the vector  

 D4 = [abs{Cr}]-1 abs{C4 - (C1
T* C4)C1} (3.26) 

has all the elements the same (except for sign), and this result is true for any combination 

of vectors C1 to C5; only the values are different. Hence, we can make all the elements of 

abs(Er1) the same as abs{E97}by multiplying by the inverse of any one of the elements of 

abs{D4}, ξ = 1/ D4,1 (D4,1 is the first element of abs{D4}). Now, of the five elements of 

the vector abs(Er1), only one is the signal (i.e., in this example the 4th element), the rest 

are to be discarded. To determine which element to retain, we use the initial velocity 

estimate (this is an approximate velocity and it has bias due to the clutter filter). The 

initial mean velocity of the weather signal is obtained from the spectrum after the 

magnitude deconvolution but before the multiplication by this constant (ξ) to restore the 

amplitude. There will be five identical replicas of the signal components, although with 

reduced amplitudes, in the five locations from which the clutter is removed. Since they 

are symmetrically distributed about the zero Doppler, their contribution to the mean 

velocity is zero. The small bias in the mean velocity is because one of these five replicas 

is actually the signal, whose contribution to the mean velocity is neutralized by the other 

four replicas. Once we know the approximate mean velocity we can determine which one 

replica is the signal and discard the other four. This is accomplished by retaining the one 

replica that falls within the M/2 coefficients centered on the initial velocity estimate. The 

amplitude of this correct replica is restored by multiplying by the factor ξ. It may be 
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noted that we can multiply all the replicas by the factor before estimating the initial 

velocity with no effect on the velocity, because as mentioned earlier, its contribution to 

the mean velocity is zero because of the symmetry. 

It is important to note that the initial velocity comes from only those coefficients which 

are not contaminated by the clutter. Hence, if the clutter filter is very wide then the 

approximate velocity may be too poor to correctly determine the original position of the 

signal coefficients, although we know the exact amplitude. This sometimes causes 

erroneous velocity for very wide clutter filter, but in general, the clutter spectrum width is 

narrow, requiring a fairly narrow clutter filter which leaves enough coefficients for a 

reasonably accurate initial mean velocity estimate. For example, a test on an actual 

staggered PRT radar data with a CNR = 90 dB, the clutter filter parameter q = 4 was 

sufficient to filter the clutter. q = 4 corresponds to 2*q-1 columns from which clutter is 

filtered; i.e., in this case {160 - (2*4-1)*5} = 115 coefficients out of 160 are available for 

the initial velocity estimation. The Blackman window was used for this analysis.  

Now, we put together the whole clutter filtering and the bias correction process in a 

compact matrix operation form. If the clutter filter width in terms of the number of DFT 

coefficients is nc, we place these symmetrically about the 1st coefficient (zero Doppler). 

For this, it is necessary to make nc an odd number. Therefore, we select first q columns 

and last q-1 columns for filtering the clutter, so that nc = 2*q-1. The clutter from the first 

q columns of Vr is removed by subtracting the projection of each column onto C1 

multiplied by C1. Similarly, the clutter from the last q-1 columns is removed by 

subtracting the projection of each column onto C5 multiplied by C5. The rest of the 

columns are left unchanged. This complete operation can be written in matrix notation as  
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 Vf = Vr - Cf1 Vr If1 - Cf2 Vr If2,  (3.27) 

where Cf1 and Cf2 are the clutter filter matrices, and If1 and If2 are matrices that select the 

columns to be filtered. These are given by 

 Cf1 = C1 C1
T*, (3.28a) 

  Cf2 = C5 C5
T*. (3.28b) 

The matrix If1 is a M/2xM/2 diagonal matrix with diagonal elements equal to 1 for the 

first q elements and 0 for the rest. Similarly, the matrix If2 is a M/2xM/2 diagonal matrix 

with last (q-1) elements unity and the rest zeros. For example, the diagonals of the 

matrices for q = 4 are 

 diag {If1} = [11110000 .... 000],  (3.29a) 

and  diag {If2} = [0000 .... 000111].  (3.29b) 

Note that (2q-1) = nc is the clutter filter width in terms of the number of spectral 

coefficients. Hence, the first four 1’s in (3.29a) correspond to 0th to 3rd spectral 

coefficients and the last three 1’s in (3.29b) are the three coefficients close to 0th 

coefficient on the negative side. These matrices ensure that all the rest of the columns of 

Vr are not filtered. Vf is the matrix of the signal spectrum after clutter filtering. This 

filtering procedure does not delete all the signal power present in the coefficients from 

which clutter is filtered. Of course, if the signal velocity is also near zero, it cannot be 

distinguished from the clutter, and hence, will be deleted completely. For signals with 

mean velocity other than near zero, a part of the signal power is retained, but is reshuffled 
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in amplitude and phase in the clutter filtering process. This produces a bias in the velocity 

estimate, which can be eliminated if we can reconstruct the original signal from the 

residual signal power. The original signal coefficients can be restored completely in the 

complex domain, or alternately, we can recover only the magnitudes, which is sufficient 

to estimate the spectral moments. The second procedure involves fewer computations. 

Both procedures require the approximate mean velocity of the signal. In the next section 

we explain both procedures for restoring the lost signal. To obtain the approximate mean 

velocity estimate we use magnitude deconvolution after filtering the ground clutter. 

Magnitude deconvolution is applied to the rearranged matrix directly, and is given by the 

equation 

 abs{Er}= abs([abs{Cr}]-1 abs{Vf}).  (3.30) 

The magnitude spectrum abs{Er} is rearranged in a column matrix Es. The 

autocorrelation R(Tu) is calculated from the magnitude coefficients of Es, and the initial 

approximate velocity estimate is obtained from the phase of R(Tu). 

In (3.26) vector D4 is calculated from the columns of the re-arranged convolution matrix. 

The inverse of any one of the elements of this vector gave the correction factor needed to 

restore the signal component partially lost in the clutter filtering process. Since the signal 

could be in any one of the rows, we introduce a subscript ‘k’ in place of ‘4’, and generate 

five different vectors, one for each row; i.e., if the signal is in the first row we use D1, for 

the second row D2, etc. Thus, for the first q columns the correction factors are obtained 

from the 1st elements of Dk, given by 

 Dk = [abs{Cr}]-1 abs{Ck - (C1
t* Ck)C1}; k = 1,2,3,4, and 5. (3.31)  
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For the last q-1 columns the corrections factors are derived from 

 Dk = [abs{Cr}]-1 abs{Ck - (C5
t* Ck)C5}; k = 1,2,3,4, and 5. (3.32)  

For M = 64, the element values (all element values are the same) of abs(Dk) are 0, 

0.9045, 0.5590, 0.5590, and 0.9045 respectively for k = 1, 2, 3, 4, and 5, from (3.31). 

These values are the fraction of the original signal amplitude retained after the clutter is 

filtered. We get the same values for abs(Dk) from (3.32) also but in the reverse order, i.e., 

0.9045, 0.5590, 0.5590, 0.9045, and 0 for k = 1, 2, 3, 4, and 5. One of the elements is zero 

because no signal is left in the spectrum after clutter filtering. This happens when the 

clutter and signal are in the same coefficients around zero velocity. We notice that the 

coefficients are in reverse order in the second equation, and there are only three distinct 

values, of which one is zero, hence not usable. We have to devise some other mechanism 

of restoring the signal for this case; hence, we set this number to unity in the processing 

algorithm to avoid multiplication by infinity. If we set (1/0.9045) = 1.1056 = ξ2, and 

(1/0.5590) = 1.789 = ξ3, the correction factors for different positions of the signal 

components in the rearranged matrix Er are as follows: 
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In the 5x32 matrix of correction factors above, the first 16 columns are identical and the 

next 16 columns are upside down flipped version of the first 16. The values in the first 16 

columns are obtained from (3.31), and the next 16 from the (3.32). If we row-wise unfold 
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this into a single column matrix, Z, we get the 160 values in a column corresponding to 

the 160 coefficients of the spectrum. Values going to infinity are changed to 1 in the 

algorithm, and this region is dealt with separately. We can divide the entire –va to va 

interval into three regions according to the correction factor to be applied: velocity region 

(1): {|v| < va/5}, velocity region (2): {va/5 < |v| < 3va/5}, and velocity region (3): {3va/5 < 

|v| <va}. The correction factors are ξ2 for velocity region (2) and ξ3 for velocity region (3). 

To restore the true signal amplitude in the filtered columns of Vf, we first identify the row 

in which signal component is to be restored based on the initial velocity estimate, and 

multiply that coefficient by ξk, corresponding to the velocity region (2) or (3). The rest of 

the elements of that column are set to zero. For velocity region (1) we can use linear 

interpolation (in the power domain). The coefficients are filled with interpolated values 

between the (q+1)th and the (M/2-q+1)th value. With this interpolation method, the bias 

removal is not exact for velocity region (1), but is reasonably good for most applications 

(see simulation results in section 2 on linear interpolation). This procedure is carried out 

for the all columns from which clutter is filtered. In matrix notation this operation is 

represented by 

 Es
c = Es

m
 • I1 + Es

m • I2• Iv • Z, (3.34) 

where Es
c is the corrected spectrum, and Es

m is the modified spectrum in which the 

velocity region (1) (the first q and the last (q-1) elements) is filled with interpolated 

values. This modification takes care of the bias correction in velocity region (1). The dot 

(•) symbolizes an element by element multiplication operation of the two columns, like 
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the (•*) operation in MATLAB. The other column matrices used in (3.34), I1, I2, Iv, and 

Z are defined by  

 I2 = [(diag{If1} + diag{If2}),... repeat (n1+n2) times]t,  (3.35) 

 I1 = complement of I2, (interchange 0s and 1s), (3.36) 

 Iv = [000... 001111...1110000...]t,  (3.37) 

(Iv is a (Nx1) element vector with N/(n1+n2) ones placed such that the 1s are centered on 

the mean velocity coefficient, the rest are all zeros), and  

 Z = [1111...,ξ2,ξ2,ξ2...,ξ3,ξ3,ξ3,... ,ξ2,ξ2,ξ2...,111...]T.   (3.38) 

The spectral parameters are then estimated from the corrected spectrum Es
c. The mean 

power and the mean velocity are estimated in the usual manner, except for the width 

estimation. 

In practice, the “narrow” spectrum criterion, based on which the magnitude 

deconvolution procedure works, is not satisfied exactly for weather signals. Although the 

power outside the M/2 extent centered on the mean velocity is small, the spectral 

components are never exactly zero elsewhere in the spectrum. Further, noise is always 

present across the spectrum, if not the signal. Hence, the magnitude deconvolution is 

never exact, and the reconstructed spectrum has some residual spectral power spread over 

the rest of the spectrum which affects the width estimate. The other two parameters are 

not affected by it (see Fig. 3.1d of report 3). Simulation studies indicated that if we 

estimate the spectrum width from M coefficients centered on the mean velocity, we get 
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an unbiased width estimate. A very interesting observation from the simulation studies is 

that the reconstructed spectrum using the magnitude deconvolution procedure gives 

correct spectral moments even when the weather signal spectral power spread is as much 

as M coefficients, which is twice that specified by the “narrow” spectrum criterion. Note 

that in this case the reconstructed spectrum is not exact, but the mean power and mean 

velocity are not affected. The change in the width can be offset by selecting M 

coefficients centered on the mean velocity for the width estimation. The other two 

parameters are estimated with the complete spectrum.  

Report 7 gives a detailed description of the pulse pair algorithm as applied to staggered 

PRT sequences. It also includes a part which censors the velocity data whenever there is 

overlaid signal. In appendix B, we list only the clutter filtering part of the algorithm. In 

the algorithm given in report 7, the clutter filtering removes only the D.C. component 

from the I and Q samples; this does not filter the clutter adequately.  
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3.2. Choice of PRTs 

The staggered PRT algorithm described in previous reports works, in principle, for any 

given pair of PRTs. Performance, however, strongly depends on the choice of these 

PRTs, and choosing the optimum pair of T1 and T2 for the operational environment is 

critical. The PRTs are constrained by (1) system limits, (2) range coverage requirements, 

(3) design considerations, and (4) desired errors of estimates. We elaborate on these 

constraints next. 

System limits include the transmitter’s maximum RF duty cycle and the memory 

allocated for time series data in the signal processor. The former imposes a lower limit on 

the PRTs; i.e., the duty cycle τ/Ts cannot exceed 0.2%; hence, the shortest PRT possible 

with the WSR-88D’s short pulse (1.57 μs) is 780 μs. The latter imposes an upper limit on 

the PRTs; for example, on the RVP-8 processor, the maximum number of range bins is 

set to 3072, with a typical sample spacing of 1.67 μs (250 m), the longest PRT possible is 

5.12 ms, which exceeds our needs.  

Range coverage requirements are specified in terms of the maximum unambiguous range 

ra = cTs/2; thus, the longer the PRT the better. For the WSR-88D, reflectivity has to be 

retrieved up to a range of 460 km and Doppler velocity (and spectrum width) up to a 

range of 230 km. Recalling that in the staggered PRT technique the short PRT determines 

the maximum unambiguous range for velocity and spectrum width (ra1) and the long PRT 

the one for reflectivity (ra2), we have that T1 ≥ 1.53 ms and T2 ≥ 3.07 ms. However, actual 

requirements for intermediate to higher elevations can be relaxed if we assume that storm 

tops are below 18 km (~59000 ft). For example, for a height of 18 km, the slant range is 
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~300 km at an elevation of 2.4 deg and ~150 km at an elevation of 6 deg. Therefore, 

actual requirements for range coverage at intermediate elevations (> 2 deg) are 300 km or 

less, and the requirements on T1 and T2 stated above can be relaxed. At 2.4 deg, r ≤ 300 

km, so the maximum unambiguous range for reflectivity can be relaxed to ra2 ≥ 300 km, 

but the one for velocity and spectrum width remains as ra1 ≥ 230 km. This leads to T1 ≥ 

1.53 ms and T2 ≥ 2 ms. On the other hand, at 6.0 deg r ≤ 150 km; thus, ra1 ≥ 150 km and 

ra2 ≥ 150 km, leading to T1, T2 ≥ 1 ms.  

Design constraints are inherent to the particular staggered PRT algorithm. For example, 

the recommended algorithm assumes that T1 is the short PRT and T2 the long one, so T1 < 

T2. In addition, the preferred PRT ratio is κ = T1/T2 = 2/3. This leads to the fewest number 

of rules for the velocity dealiasing algorithm and to optimum performance of the spectral 

ground clutter filter. The reader should note that none of the currently existing PRTs in 

the WSR-88D satisfy this condition. Although the signal processor and the transmitter are 

not limited to the 5 legacy sets of 8 PRTs each, adding new PRTs into the system would 

most likely impact the ORPG since, for example, all VCP definitions use PRI numbers 

(not the actual PRT in microseconds). A more thorough analysis of the impacts to the rest 

of the system is beyond the scope of this work. We recommend that this analysis is 

carried out before a decision is made regarding the implementation of the staggered PRT 

technique.  

Errors of estimates add another constraint to the PRTs. For example, echo coherency is 

required for precise Doppler measurements. Echo coherency is achieved if the spectrum 

width (σv) is much smaller than the Nyquist interval. For a spectrum width of 4 m/s (the 
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median value in severe storms) T1 < 2.2 ms; in general, larger values of σv require shorter 

PRTs. Note that this requirement competes with the one for range coverage.  

Combining all these constraints, it is possible to arrive at a set of “acceptable” PRTs. 

Figure 3.2.1 shows the area of valid PRTs obtained by combining system limits, range 

coverage, design constraints, and signal coherency requirements. Further, by limiting the 

PRT ratio to 2/3, the set of possible PRTs lies on the highlighted line. Of these PRTs, the 

shortest ones would lead to more pairs in the given dwell time and better statistical 

performance. These are also indicated in the figure.  

 

Fig. 3.2.1. Acceptable PRTs for the staggered PRT technique considering system limits, 
range coverage, design constraints, and signal coherency requirements.  
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3.3. Errors of Estimates 

From the analysis in the previous section, we have the values of PRTs that can potentially 

fulfill all the constraints imposed by an operational system. However, do these values of 

T1 and T2 lead to acceptable errors of estimates? The answer to this question is not trivial 

because the staggered PRT technique uses different sets of spaced pairs to estimate each 

of the spectral moments, so the usual formulas for the standard error of estimates have to 

be modified. This is because the estimation of reflectivity in the staggered PRT algorithm 

depends on the location of the range gate with respect to three zones, as depicted in Fig. 

3.3.1. 

 

Fig. 3.3.1. Depiction of the three zones used for reflectivity estimation in the staggered 
PRT algorithm 

Because the algorithm assumes that echoes do not extend beyond ra2, only overlay of the 

short PRT into the long PRT is allowed, and the three zones depicted in Fig. 3.3.1 are 

determined accordingly. Zone I has clean returns in the short PRT, but may not in the 

long PRT; hence, only short PRT pulses are used in the estimation of reflectivity for all 

the range gates within zone I. Range gates in Zone II exhibit uncontaminated returns in 

both short and long PRTs; hence, all pulses can be used in the estimation process, leading 

to more accurate estimates of reflectivity, especially for large spectrum widths. Finally, 
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zone III is only available from the long PRT returns, and these are used for reflectivity 

estimates within this zone. Fig. 3.3.2 summarizes the performance of the three reflectivity 

estimators corresponding to each of the zones (performance shown here does not include 

averaging in range). Note that all estimators exhibit equivalent performance for narrow 

spectrum widths. This is because, for heavily correlated samples, the number of 

equivalent independent samples depends on the dwell time more than on the number of 

samples. For large spectrum widths, estimators that use all pulses perform better than 

those using just one set of pulses (either short or long PRT pulses). Also, performance 

improves for shorter PRTs as there are more samples in the dwell time.  

 
Fig. 3.3.2. Standard deviation of 250-m reflectivity estimates vs. spectrum width for 

different staggered PRT sets and constant PRT ratio (2/3), dwell time (60 ms), and signal-
to-noise ratio (40 dB). Solid curves correspond to the estimators using short (or long) 

PRT pulses only; dashed curves correspond to estimators that use all pulses.  
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Doppler velocities in the staggered PRT algorithm are obtained by dealiasing v1 

(estimated from short PRT pairs) using v2 (estimated from long PRT pairs); hence, errors 

of velocity estimates are those of v1. Figure 3.3.3 shows the errors of velocities for this 

case and also for the case in which v2 is dealiased using v1. It is evident that the former is 

always better, and that shorter PRTs lead to better performance as there are more samples 

in the dwell time.  

 

 

 
Fig. 3.3.4. Standard deviation of mean velocity estimates vs. spectrum width for different 
staggered PRT sets and constant PRT ratio (2/3), dwell time (60 ms), and signal-to-noise 

ratio (40 dB). Solid curves correspond to the estimators using short PRT pairs; dashed 
curves correspond to estimators that use long PRT pairs. 
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Spectrum width estimation in the staggered PRT algorithm uses the power estimate as 

described before and the lag-1 autocorrelation estimate that can be derived either from 

the short or the long PRT pairs. As shown in Fig. 3.3.3, decision of which set of pairs to 

use for the spectrum width estimation is not obvious. On one hand, estimation of 

spectrum widths from long PRTs is impaired by the saturation phenomenon described in 

our previous report (report 8). However, there is a crossover point for all curve pairs 

below which, estimates using long PRT pairs perform better than those using short PRT 

pairs. If we assume that most of the time the measured spectrum widths will be less than 

about 4 m/s, then, especially for the shorter PRTs, it is better to use the lag-1 

autocorrelation estimates from the short PRT pairs. This contradicts what we 

recommended in our previous report and what was suggested by Zrnić and Mahapatra 

(1985). However, the decision depends on the actual PRTs being used and the true 

spectrum width of the signal (which is what we are trying to measure!). 
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Fig. 3.3.4. Standard deviation of spectrum width estimates vs. spectrum width for 
different staggered PRT sets and constant PRT ratio (2/3), dwell time (60 ms), and signal-
to-noise ratio (40 dB). Solid curves correspond to estimators using power estimates from 
short PRT pairs only; dashed curves correspond to estimators that use power estimates 

from all pairs. Curves with no markers correspond to estimators using lag-1 
autocorrelation estimates from short PRT pairs; curves with markers correspond to 

estimators that use lag-1 autocorrelation estimates from long PRT pairs. 
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3.4. Replacing the Batch Mode 

Because requirements for range coverage can be relaxed at intermediate to high 

elevations, staggered PRT appears as an excellent candidate to mitigate range and 

velocity ambiguities in the WSR-88D at these elevations, significantly improving the 

performance over the current batch mode. The staggered PRT technique can perform 

better than the batch mode both in terms of improving range coverage and reducing 

velocity aliasing.  

Replacement scans for those using batch waveforms should have the same or larger range 

coverage. The range coverage should meet NEXRAD requirements but can be adjusted 

(relaxed) using maximum height of storm tops as discussed before. Note that 

requirements for range coverage in the WSR-88D are larger for reflectivity than those for 

velocity and spectrum width. This perfectly matches the performance of the staggered 

PRT technique, since ra2 (the maximum unambiguous range for reflectivity which is 

derived from the long PRT) is always larger than ra1 (the maximum unambiguous range 

for velocity and spectrum width which is derived from the short PRT). In addition to 

matching or exceeding range coverage requirements, a replacement of the batch mode 

should maintain the current update times (dictated by the antenna rotation rate). Hence, a 

replacement staggered PRT scan should operate with the same dwell times as the batch 

scan that is trying to replace. Finally, after a suitable set of PRTs is determined based on 

the previous conditions, we must make sure that the resulting errors of estimates meet or 

exceed NEXRAD requirements.  
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The process of selecting staggered PRTs is as follows:  

(1) T1 is selected based on range coverage requirements for Doppler velocity assuming 

that storm tops are not higher than 18 km (see Fig. 3.4.1),  

(2) T2 is selected based on T1 and the PRT ratio (κ = 2/3 is preferred) 

(3) The number of pairs in a radial is determined by the batch mode dwell time and the 

selected staggered PRTs. 

(4) Finally, T1, T2, and Mp determine the errors of estimates. 

 

Fig. 3.4.1. Antenna beam height above the ground vs. slant range for different elevation 
angles. Required maximum range coverage can be derived by assuming that storm tops 

do not extend higher than 18 km above the ground (dotted line). 
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In what follows, the staggered PRTs for batch mode replacement are selected, and the 

performance of staggered-PRT-based estimates is compared to that of the batch mode for 

the standard WSR-88D VCPs (note that VCP 31 does not employ the batch mode, and 

the VCP 121 employs MPDA to achieve improved velocity dealiasing in the ORPG). 

Errors are computed using theoretical formulas (Doviak and Zrnić, 1993) and the 

following parameters: 

 SNR (dB) σv (m/s) 
Reflectivity 10 4 

Mean velocity 8 4 

Errors for reflectivity in the batch mode are given for the long and short PRT estimates 

(the algorithm uses short PRT estimates in places with no overlaid echoes, and reverts to 

the long PRT estimates otherwise). In all cases, reflectivity errors do not include range 

averaging.  

a) VCP 11: 5 scans (out of 16) employ batch waveforms 

EL 
(deg) 

Batch Mode 
DT (ms) 

T1 (ms) T2 (ms) Mp 

2.4 59.09 1.535 2.3025 15 
3.35 53.89 1.535 2.3025 14 
4.3 53.89 1.381 2.0715 16 
5.25 55.99 1.181 1.7715 19 
6.2 55.99 1.028 1.542 22 

 
 Batch Mode Staggered PRT 

EL (deg) SD(Z) (dB) SD(v) (m/s) SD(Z) (dB) SD(v) (m/s) 
2.4 1.73 / 1.19 0.995 1.12 1.17 
3.35 1.91 / 1.19 0.995 1.16 1.21 
4.3 1.91 / 1.19 0.995 1.18 1.17 
5.25 1.77 / 1.19 0.995 1.08 1.15 
6.2 1.77 / 1.19 0.995 1.07 1.15 
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b) VCP 12: 5 scans (out of 17) employ batch waveforms 

EL 
(deg) 

Batch Mode 
DT (ms) 

T1 (ms) T2 (ms) Mp 

1.8 35.33 1.535 2.3025 9 
2.4 36.23 1.535 2.3025 9 
3.2 36.23 1.535 2.3025 9 
4 36.23 1.455 2.182 10 

5.1 34.26 1.208 1.8116 11 

 
 Batch Mode Staggered PRT 

EL (deg) SD(Z) (dB) SD(v) (m/s) SD(Z) (dB) SD(v) (m/s) 
1.8 2.44 / 1.37 1.18 1.40 1.5 
2.4 2.65 / 1.32 1.12 1.40 1.5 
3.2 2.65 / 1.32 1.12 1.40 1.5 
4 2.65 / 1.32 1.12 1.35 1.45 

5.1 2.65 / 1.35 1.16 1.36 1.49 

 

c) VCP 21: 4 scans (out of 11) employ batch waveforms 

EL 
(deg) 

Batch Mode 
DT (ms) 

T1 (ms) T2 (ms) Mp 

2.4 86.99 1.535 2.3025 23 
3.35 86.99 1.535 2.3025 23 
4.3 86.99 1.381 2.0715 25 
6.0 87.71 1.054 1.5814 33 

 
 Batch Mode Staggered PRT 

EL (deg) SD(Z) (dB) SD(v) (m/s) SD(Z) (dB) SD(v) (m/s) 
2.4 1.71 / 0.94 0.765 0.93 0.94 
3.35 1.71 / 0.94 0.765 0.93 0.94 
4.3 1.71 / 0.94 0.765 0.92 0.93 
6.0 1.65 / 0.94 0.765 0.88 0.93 
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d) VCP 32: 3 scans (out of 7) employ batch waveforms 

EL 
(deg) 

Batch Mode 
DT (ms) 

T1 (ms) T2 (ms) Mp 

2.5 241.71 1.535 2.3025 63 
3.5 241.71 1.535 2.3025 63 
4.5 241.71 1.335 2.002 72 

 
 Batch Mode Staggered PRT 

EL (deg) SD(Z) (dB) SD(v) (m/s) SD(Z) (dB) SD(v) (m/s) 
2.5 1.5 / 0.56 0.43 0.58 0.57 
3.5 1.5 / 0.56 0.43 0.58 0.57 
4.5 1.5 / 0.56 0.43 0.57 0.56 

 

From the previous tables, it is evident that reflectivity estimates are always better with 

staggered PRT (for example, VCP 32 and VCP 21 would not require range averaging to 

produce acceptable reflectivity estimates). However, errors in velocity estimates are 

always the same or higher than with the batch mode. Whereas staggered PRT based 

estimates using VCP 32 and VCP 21 are within 1 m/s, those from VCP 11 and VCP 12 

are above 1 m/s by as much as 50% (see VCP 12). However, note that velocity errors 

from the batch mode in VCP 12 are also larger than 1 m/s.  

To reduce the errors of estimates, one might attempt to use shorter PRTs and sacrifice 

range coverage (and increase the likelihood of overlaid echoes). Figure 3.4.2 shows the 

errors of reflectivity, velocity, and spectrum width for different PRT values. In all cases, 

the dwell time is about 60 ms and the true spectrum width is 4 m/s. For reflectivity and 

spectrum width estimates, the SNR is 10 dB; for velocity, the SNR is 8 dB. The bottom 

right panel of this figure shows the decreasing number of pairs as the PRT increases for a 
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fixed dwell time. As expected, reflectivity errors increase for larger PRTs as the number 

of pairs is reduced. However, NEXRAD requirements can be met with any PRT set in the 

allowable range. Alternatively, spectrum width estimates are only acceptable for the 

range 0.85 ms < T1 < 1.8 ms. However, errors of velocity estimates achieve a minimum 

value of 1.125 m/s at T1 = 1.3 ms. Therefore, it is not possible to reduce the errors of 

velocities estimates by reducing the PRTs and maintaining the same dwell times.  

A solution to this problem consists in adding staggered PRT pairs to each radial (i.e., 

increasing the dwell time). To reduce the errors of velocity estimates to less than 1 m/s, 

we would need to increase the scan time by about 7 sec; effectively adding approximately 

30 sec to the entire volume coverage pattern. If this is deemed unacceptable, the 

requirements could be relaxed to allow slightly higher errors of estimates (as currently 

done with VCP 12). Still, if this were also unacceptable, we could use range 

oversampling techniques to reduce the errors of estimates without increasing the 

acquisition time. The staggered PRT technique is fully compatible with range 

oversampling techniques, and these are already scheduled to be incorporated in future 

ORDA upgrades.  
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Fig. 3.4.2. (a, b, c) Errors of reflectivity, velocity, and spectrum width for different 
staggered PRT sets using κ = 2/3 and a constant dwell time of 59.09 ms. In all cases the 

true spectrum width is 4 m/s and the SNR is indicated in the figure. (d) Number of 
staggered PRT pairs for different staggered PRT sets using κ = 2/3 and a constant dwell 

time of 59.09 ms. 

Figure 3.4.3 shows an example of the improvement realized by replacing the batch mode 

with a suitable staggered PRT scheme. Time series data was collected with the KOUN 

radar in Norman, OK using the experimental VCP 2049 (see report 8) in which a batch 

mode scan is immediately followed by a staggered PRT scan employing the same dwell 

times (i.e., achieving the same update times). A side-by-side comparison of reflectivity 

and Doppler velocity fields confirms that the staggered PRT can unambiguously recover 

reflectivities with the required range coverage and at the same time produce velocity 
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fields free of aliasing and/or obscuration (purple haze). In addition, the predicted increase 

of velocity errors is almost unnoticeable, at least for the conditions of SNR and spectrum 

width existing in this case. 

In summary, compared to the batch mode, the staggered PRT technique allows for an 

extension of both the maximum unambiguous range and maximum unambiguous velocity 

by means of a relatively simple algorithm. In addition, reflectivity estimates are more 

accurate, and there exist effective ways to mitigate clutter contamination and perform 

spectral analysis. However, velocity estimates exhibit slightly larger errors (about 15 to 

30% larger than the batch mode at SNR = 8 dB and σv = 4 m/s). Despite of this, the 

staggered PRT technique is an excellent candidate to replace the batch mode (and 

possibly the continuous Doppler mode at higher elevation angles) in standard WSR-88D 

VCPs. In this regard, replacement of the batch mode in VCPs 32 and 21, as indicated in 

the previous section, could proceed while meeting NEXRAD requirements; however, 

VCPs 11 and 12 exhibit velocity errors that are larger than 1 m/s. This could be handled 

by adding time to the VCPs, or by employing range oversampling techniques. In any 

case, the impact of adding new PRTs to other components of the system should be 

evaluated.  
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Fig. 3.4.3. Reflectivity and Doppler velocity fields obtained with batch mode and 
staggered PRT processing of time series data collected on March 3, 2004 with the KOUN 
radar in Norman, OK. The antenna elevation angle is 2.5 deg, the dwell time is the same 

in both cases, and the staggered PRTs have a ratio κ = 2/3. 
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3.5. Recovery of Reflectivity to 5Tu in Staggered PRT 

3.5.1. Introduction. 

The staggered PRT scheme designed for obtaining a larger unambiguous velocity using 

the difference PRT, (T2-T1), can also give a larger unambiguous range. Without any kind 

of overlay resolution method the staggered PRT technique has an unambiguous range of 

ra1 = cT1/2, and with one-overlay resolution (report 4) it is possible to extend the range to 

ra2 = cT2/2 corresponding to the longer of the two PRTs. By overlay resolution it is 

implied that all three spectral moments (the reflectivity, the mean Doppler velocity, and 

the spectrum width) of both the overlaid signals are estimated to within acceptable 

accuracy. However, the one-overlay resolution is effective only for overlay power ratios 

less than about 20 dB for median spectrum widths. If the overlay is too strong, then it is 

not possible to accurately estimate the spectral parameters of the weaker of the two 

overlaid signals. The maximum range requirement can be met using the staggered PRT 

transmission in elevations 2.42° and higher (Table A.3. report 8) with an unambiguous 

velocity, va ≥ 45 m s-1. In the WSR-88D VCP11 scan using the contiguous Doppler (CD) 

scan, the unambiguous velocity is 25 m s-1. Thus the staggered PRT improves va by 1.8 

times while retaining the maximum ra. In the lowest two elevations the long PRT scan is 

retained to get the reflectivity over 460 km. Only the short PRT Doppler scan is replaced 

by the SZ phase coded transmission to double the range over which the velocity is 

recovered. In this section we explore the possibility of using the staggered PRT 

transmission for the lowest two elevations as well without compromising the present 

capability of WSR-88D. 
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3.5.2. Reflectivity estimation with overlaid signals 

In the one-overlay resolution algorithm an assumption is made that there is no weather 

beyond the range ra2. With that assumption, the overlay occurs only for certain ranges 

and in alternate samples; hence, it is possible to separate the two overlaid echoes. If this 

criterion is not met, the overlay can occur in all the samples from certain ranges which 

cannot be resolved easily. However, it may be possible to estimate the mean powers if 

not all the spectral moments. Because the overlaid echoes from two different ranges are 

uncorrelated, the mean power estimate from the sample sequence is a sum of the mean 

powers of the two overlaid echoes.  

 

Fig. 3.5.2.1. Illustration of different overlay situations in staggered PRT scheme. 
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 Fig. 3.5.2.1 shows the staggered PRT transmission scheme for κ = T1/T2 = 2/3 for one 

cycle (T1+T2). The transmitted pulses are at 0 and 2Tu. The sloping lines represent the 

echo amplitude as a function of time. The three figures 3.5.2.1 (a), (b) and (c) depict the 

echoes extending to 3Tu, 4Tu, and 5Tu intervals after the pulse transmission. No overlay 

occurs if the echoes extend to only 2Tu. We label the ranges in the delay time interval 

(n-1)Tu to nTu, n = 1, 2, 3, 4, and 5, as A, B, C, D, and E regions, respectively. We take a 

set of 5 echo samples at delay times τ (τ < Tu ), (τ + Tu), (τ + 2Tu), (τ + 3Tu), and (τ + 

4Tu), after the T1 pulse is transmitted, and label them as v1 to v5. From the figure, it is 

clear that for one-overlay situation (Fig. 3.5.2.1a) only the 3rd sample has overlay from A 

and C regions. For the second case (Fig. 3.5.2.1b) we have overlay in three of the five 

samples. The samples v1, v3, and v4 have returns from regions A&D, A&C, and B&D, 

respectively. We label this situation as 3-overlay situation. Similarly, the last case (Fig. 

3.5.2.1c) has overlay in all the 5 samples (5-overlay case).  

If this were a deterministic problem, it would be easy to solve the system of equations 

and determine the echo powers from each of the five ranges involved. For example, 

consider the 5-overlay situation and let the power returns from samples 1 through 5 be p1 

through p5. If the power returns from ranges A though E are pa, pb, pc, pd, and pe, 

respectively, then we can write a matrix equation which relate these powers as 
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The matrix is non-singular and hence can be inverted to get the individual powers pa to 

pe.  
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 (3.40) 

However, this does not work perfectly in extracting the individual range powers when the 

powers involved are estimates available from the overlaid echo samples. Therefore, we 

can expect (3.39) to work only if the weaker of the two overlaid powers is more than the 

estimate error in the stronger power. It can be argued that if the standard error of the 

stronger power estimate is ±1dB (~25.8%), the weaker overlaid power must be larger 

than 0.25 (1dB) of the stronger power, i.e., the overlay power ratio must be within ±6 dB, 

for (3.39) to resolve the powers. Since each sample has overlay from two ranges, all the 

five ranges must have echo powers within ±6 dB of each other. This is generally not 

satisfied in actual weather situations. Most often, the overlay power ratio has a large 

dynamic range. 
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3.5.3. Simulation study 

To test this scheme of resolving the overlay powers, time series is simulated with five-

overlays and velocities (for each range) were chosen randomly within the interval ± va (va 

= 41.66 m s-1). The PRTs are T1 = 1.2 ms, and T2 = 1.8 ms, so that the maximum range 

corresponding to (T1+T2) is 450 km at 3 GHz transmission frequency. The spectrum 

width is set to 4 m s-1 for all the five ranges. Individual time series are generated for each 

of the five ranges and then are combined appropriately to form a staggered PRT overlaid 

sample sequence. 

Mean powers are estimated using a time series length of 32 pairs of staggered PRT pulse 

transmissions. The total number of samples is 5x32 = 160, and each power estimate, p1 

through p5, is computed from 32 samples. For example, pk , k = 1 to 5, is given by 

 ∑
=

+=
31

0

2
5 ||

32
1

i
kik vp  (3.41) 

Individual powers are resolved (assigned a correct range) using these five estimates in 

(3.40). The resolved power estimates are compared with the actual power estimates from 

the complete time series for individual ranges to compute the errors. If the resolved 

power is within 3 dB of the actual power, it is assumed to be correct and if the error is 

more than 3 dB, it is discarded as unresolved. A large number of simulations were carried 

out to generate the statistics of reflectivity resolution using this procedure. 

Because five different ranges are involved, there are different combinations of overlay 

power ratios possible. Fig. 3.5.3.1 shows one such plot of success in resolving the mean 

powers of individual ranges. In this plot, the percentage success in recovering the weaker 
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signal pc is a function of overlay power ratio po/pc, where po is the total sum of all five 

powers. The stronger signal pa is always recovered, but the weaker signal recovery 

depends on the overlay power ratio. Further, the presence of other range overlays also 

affects the recovery. The four traces in Fig. 3.5.3.2 indicate the extent of degradation in 

the recovery of the weaker signal when more than one overlay is present. The first two 

traces are for one-overlay situation; without and with pb present. Note that in a one-

overlay situation all three powers can be estimated directly, because pa = p1, pb = p2, and 

pc = p5 (Fig. 3.5.2.1a). We do not have to use the overlaid samples at 3Tu. Similarly for 

the situation in Fig. 3.5.2.1b, we have pb = p2 and pc = p5 available directly, and the other 

two can be obtained from pa = (p3 - p5) and pd = (p4 – p2). The recovery of pa will be 

affected if pa < pc, and pd will be affected if pd < pb. However, we must have an a priori 

knowledge of the overlay extent to exercise this option. In the absence of any prior 

information from a long PRT scan, we have to assume the presence of all the five echoes 

and apply (3.40). On the other hand, it is possible to choose the PRTs and an elevation 

angle such that the situation depicted in Fig. 3.5.2.1b is satisfied.  

Figure 3.5.3.1 is generated using (3.40) for resolving the overlaid powers with no a priori 

knowledge of the weather extent. In case that the overlay extends only up to 4Tu (Fig. 

3.5.2.1b) the powers pa and pd need to be resolved. The percentage of success for this case 

is plotted in Fig. 3.5.3.2. It is clear that the weaker signal cannot be reliably recovered if 

the overlay power ratio is more than about ±6 dB when only two signals are involved, 

and this extent is further reduced if more than two signals are involved. Thus, the long 

PRT transmission appears to be indispensable to get a clear range up to 460 km.  
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Fig. 3.5.3.1. The percentage success rate of weaker signal power recovery for echo extent 
up to 5Tu. Note that the red curve is offset from the pink because we plot the logarithm of 

1 + (pa/pc) and 1 + (pa + pb)/pc, but pa = pb so it is 1 + 2pa/pc. Hence, for the same pc the 
curve shifts to the right. 

 
 

Fig. 3.5.3.2. Percentage of success rate of weaker signal power recovery for echo extent 
up to 4Tu. 
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3.6. Summary of spectral moment estimators 

Spectral moment estimates from staggered pulse sequences have been studied in several 

reports (reports 3, 4, and 5). Herein, a summary of the results is presented. In the spectral 

domain clutter filtering scheme (section 3.1), the staggered PRT time series is converted 

to a uniform time series with signal sampled at Tu intervals by inserting zeros in places 

where samples are not available. The spectral processing can be carried out on the 

derived time series to filter the clutter. The reconstruction of the spectrum after the clutter 

is filtered is accomplished by the "magnitude deconvolution" procedure. This 

reconstructs the magnitude spectrum well if the condition of "narrow" criterion (width 

less than 1/5 the of the extended unambiguous velocity interval) is satisfied.  

The spectrum width is computed from 2/5 (for κ = 2/3) of the spectral coefficients 

centered on the mean velocity. Now, from this spectrum, we can compute 

autocorrelations R(Tu) and R(2Tu), and the mean power S. From these three quantities, we 

can calculate the spectrum width in three different ways. 

It is also possible to reconstruct the complex spectrum over the 2/5 of the Nyquist 

interval using spectral restoration procedure-2 (Sachidananda and Zrnić, 2005). This 

procedure is derived especially for estimating dual polarized parameter ΦDP and ρhv 

because ΦDP requires the phases of the spectral coefficients. For all other parameters 

magnitude spectra are sufficient. However, if the computational time is not a great 

constraint we can apply this procedure to reconstruct the complex spectra in the case of 

single polarized radar. From these spectra we can obtain the moments; we compare the 
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quality of these moments with moments obtained by other means (as previously reported) 

herein. 

In the absence of ground clutter, the ground clutter filter (GCF) is not required, and pulse 

pair processing can be used for computing the autocorrelations in the time domain. It is 

also possible to reconstruct 2/5 of the complex spectrum centered on the mean velocity 

and estimate the spectrum width from the spectrum. However, this involves additional 

computations. Thus, we have several alternatives for width estimation.  

Extensive simulation is carried out with each of the estimators to determine the accuracy 

of the width estimates with respect to the various parameters that affect its accuracy. The 

mean and standard deviation of the error in the width estimate width respect to the width 

input to the time series simulation program is calculated to determine the performance of 

each estimator.  

3.6.1. Spectrum width estimators for staggered PRT data without GCF 

The performance of the width estimators based on the autocorrelation estimates have 

been studied for the uniform PRT sequences, and formulae are available for the mean and 

standard errors of these estimators (Doviak and Zrnić, 1993). However, first we shall 

include the results of simulations on uniform PRT sequences as a reference for 

comparison with the staggered PRT estimators. Here, we use the notation Tu for the 

uniform PRT as well as the derived uniform PRT from the staggered PRT sequence. We 

consider κ = T1/T2 = 2/3 for the staggered PRT, where T1 and T2 are the two PRTs, with 

T1 = 2Tu and T2 = 3 Tu. We use the notation S for the mean power, and R(Tu), the 

autocorrelation at lag Tu, etc., with lag time in brackets.  
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For the uniform PRT, we can compute S, R(Tu), and R(2Tu). Thus, for uniform PRT we 

consider three estimators: est#1 using S/R(Tu), est#2 using S/R(2Tu), and est#3 using 

R(Tu)/R(2Tu). The est#1 and est#2 are given by equation 6.27 of Doviak and Zrnić 

(1993), and the est#3 is by equation 6.32 in the same book. The same holds for estimates 

from spectra which are reconstructed out of staggered sequences; the only computations 

are from sinusoidal weighting of spectra which is exactly equivalent to the est#3. These 

give us some reference values to evaluate the “staggered PRT” width estimators.  

The staggered PRT has less information (2 samples out of 5) than available in a uniform 

PRT sequence. For the staggered PRT, we number the estimators in the same way but 

using T1 and T2 in places of Tu and 2Tu. Thus, the estimators for the staggered PRT are: 

est#1 using S/R(T1), est#2 using S/R(T2), and est#3 using R(T1)/R(T2). 

In the absence of the ground clutter filter, it appears best to use the time domain pulse 

pair method of computing the autocorrelations R(T1) and R(T2). Hence for the staggered 

PRT we have three estimators for the spectrum width, σv, given by 

Est#1: ||))(ˆ/ˆln(||2ˆ 1
1 TRSva

v π
σ =   (3.42) 

Est#2: ||))(ˆ/ˆln(||2ˆ 2
2 TRSva

v π
σ =  (3.43) 

Est#3: ||))(ˆ/)(ˆln(||
6

2ˆ 21 TRTRva
v π

σ =  (3.44) 

where S is the mean power, va = λ/(4Tu), va1 = λ/(4T1) and va2 = λ/(4T2). The hat over the 

parameter indicates an estimate. The staggered PRT time series is simulated with input 
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widths varying from 0.5 m/s to 8 m/s, samples at intervals of 0.5 m/s, and the input 

velocity is spread uniformly over the extended Nyquist interval. The extreme 10 percent 

of the Nyquist is not included to avoid velocity aliasing. The mean power is made 

sufficiently large to provide a SNR > 30 dB. The width estimates are obtained using the 

above three expressions for each realization of the time series. The error in the width is 

defined as the difference between the input spectrum width to the simulation program and 

the estimated width. One hundred simulations are carried out at each of the input 

parameter sets, and mean bias and the standard error is computed with respect to the 

simulation input parameters.  

If the clutter is to be filtered from a staggered PRT sequence, a spectral domain filtering 

and bias correction procedure (report 3) should be applied. This spectrum reconstruction 

procedure can also be applied in the absence of the clutter filter to generate the spectrum 

of the signal samples at Tu intervals. The spectrum can be reconstructed either in the 

magnitude domain or, with a more elaborate procedure, the complex spectrum can also 

be reconstructed over 2/5 of the extended Nyquist interval. The magnitude domain 

spectrum reconstruction is exact only if the "narrow" criterion is satisfied by the weather 

signal. However, if the weather signal coefficients are spread over 2/5 (or less) of the 

extended Nyquist interval, accurate velocity estimates can be obtained even though the 

reconstructed spectrum is not exact. In the absence of the clutter, the complex spectral 

reconstruction procedure restores 2/5 of the spectrum accurately. Hence for the complex 

spectrum reconstruction procedure, the signal spectrum can have significant coefficients 

spread over 2/5 of the extended Nyquist which is twice that defined by the "narrow" 

criterion.  
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The velocity and the spectrum width can also be estimated from the reconstructed spectra 

using the spectral reconstruction procedure. In an effort to compare all these estimation 

procedures, the bias and standard deviation of the error in the spectrum width as well as 

the reflectivity and velocity are computed using simulated time series, and are presented 

in the following figures. 

Fig. 3.6.1.1 compares the bias error in the width estimates using estimator #1, i.e., 

w{S/R(Tu)} for the uniform PRT and for the reconstructed spectra, and w{S/R(T1)} for the 

staggered PRT pulse pair processing as indicated in the figure. The blue curve is the 

standard error in the width estimate using the uniform time series, and serves as a 

reference. It is seen from the figure that the magnitude deconvolution procedure without 

the window performs as good as the uniform PRT for widths up to 5 m s-1. This is about 

the “narrow spectrum” limit of the PRT in the simulation. With the von Hann window, 

the magnitude deconvolution procedure performs much better for widths less than 5 m s-1 

in terms of the width estimate standard error. The staggered PRT pulse pair, magnitude 

deconvolution with window, and the complex spectral reconstruction with window 

perform almost the same. It is interesting to note that the complex spectral reconstruction 

method without the window performs better than the uniform PRT reference. From the 

simulations, we concluded that this is because the spectral skirts are removed from the 

3/5 of the extended Nyquist interval. It is also seen that the cross over point between this 

curve (cyan) and the uniform PRT curve (blue) is about 7.5 m/s, which is approximately 

where the signal spectra exceeds the 2/5 of the extended Nyquist interval. 

Figure 3.6.1.2 is a similar plot for the estimator #2 (i.e., w{S/R(T2u)}; w{S/R(T2)}). 

Except for the staggered PRT pulse pair processing, all other curves using w{S/R(2Tu)} 
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for width estimation, show improvements in the standard error. The performance of the 

complex spectral reconstruction method (cyan) is almost comparable to the uniform PRT 

method (blue). In fact, the uniform PRT performance has improved to make it 

comparable to the other one. Only the performance of the staggered PRT pulse pair 

method has deteriorated with respect to the estimator #1. 

Figure 3.6.1.3. is for estimator #3. This clearly is not the best choice except for the last 

three (black, cyan, and yellow). The performance with window (black and yellow) seems 

to be immune to the estimator type! Another interesting observation is that the complex 

spectral reconstruction method performs almost equally well with all three estimators.  

Next, we examine the bias errors in the width estimates. Figures 3.6.1.3, 3.6.1.4, 3.6.1.5, 

and 3.6.1.6 depict the bias errors in the estimators #1,#2 and #3, respectively, for all the 

cases discussed in the previous three figures. The est#1 has a small bias when used with 

uniform PRT, magnitude deconvolution, and the complex spectrum reconstruction. All 

the rest have almost zero bias. With the est#2 the bias in the uniform PRT case is reduced 

to nearly zero, but the other two cases the reduction is marginal. Figure 3.6.1.6 indicates 

the performance of the est#3 is worst of the three. Only the two cases with von Hann 

window appear to give zero bias with all three estimators. The application of a window 

(von Hann or Blackmann) becomes imperative if ground clutter is to be filtered. This set 

of 6 figures can be used to select an appropriate estimator depending on the type of 

processing utilized. With clutter filtering, there is additional loss of the signal and some 

residual clutter remains in the spectrum. Both these factors affect the estimates in 

different ways. This needs to be looked at while selecting the width estimators. However, 

a major part of the PPI is without the clutter, hence these figures are sufficient. 
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Next we present the bias and standard errors in the mean velocity and mean power 

estimates. Figure 3.6.1.7 shows the standard error in the velocity estimate as a function of 

the spectrum width. Here again the uniform PRT case (blue curve) is used as a reference 

for comparison. The best velocity estimator for the staggered PRT is the complex spectral 

reconstruction method, followed by the velocity estimation from the phase of R(T1) and 

de-alias using the phase of R(T2). Figure 3.6.1.8 shows the bias error in the velocity 

which is negligible in all the cases considered. These results are without the clutter filter. 

The mean power estimates are obtained in the time domain or frequency domain. In 

either case these estimates are averages of a number of samples (in time or frequency). 

For a fixed number of samples the standard error of estimates is smallest if no window is 

applied (Fig. 3.6.1.9) because then the information contained in the samples is utilized to 

the fullest extent possible. Although the power estimates have no bias, the estimates of 

reflectivity factor in dBZ units do have a bias which is caused by the logarithmic 

transformation (into dBZ units) of the sample power estimates (Fig. 3.6.1.10).  
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Fig. 3.6.1.1. Standard error in the width estimates using estimator #1. All the estimators 
except the stPRT use S/R(Tu). Tu is the spacing of samples in the uniform PRT, hence the 
number of these samples is 100. M is the number of samples in the staggered sequence 
(here 40). The stPRT uses S/R(T1) where T1 is the short PRT (T1 = 2Tu = 1 ms). In the 

magnitude deconvolution and complex spectrum estimators, the spectra are reconstructed 
and then the autocovariance processing is applied; this computation is done in the 

spectral domain; that is, the moments are obtained from sinusoidal weighting of the 
spectra (i.e., 6.17 in Doviak and Zrnić, 1993). The von Hann window indicates that this 

was applied to staggered sequence before spectral reconstruction.  
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Fig. 3.6.1.2. Standard error in the width estimates using estimator #2. Here the staggered 
pulse pair estimator uses lag T2 = 3Tu, the other estimators use lag 2Tu as indicated in the 

figure.  
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Fig. 3.6.1.3. Standard error in the width estimates using estimator #3. The staggered PTR 
estimator uses the autocovariances at lags T1 and T2 as indicated. The other estimators use 

autocovariances at lags Tu and 2Tu. 
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Fig. 3.6.1.4. Bias error in the width estimates using estimator #1. Other parameters are as 
in Fig. 3.6.1.1 
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Fig. 3.6.1.5. Bias error in the width estimates using estimator #2. Other parameters are as 
in Fig. 3.6.1.2. 
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Fig. 3.6.1.6. Bias error in the width estimates using estimator #3. Other parameters are as 
in Fig. 3.6.1.3. 
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Fig. 3.6.1.7. Standard error in the velocity estimate using different methods. The methods 
use autocovariances at indicated lags and divide these with the powers, except in 

v[R(T1)/R(T2)]. The dealiasing method obtains the velocity from lag T1 but uses both lags 
T1 and T2 for dealiasing. The magnitude deconvolution and complex spectral processing 
obtain the spectra from the staggered PRT sequence and then use sinusoidal weighting of 
the spectra to obtain the mean velocity (equation 6.17 of Doviak and Zrnić, 1993); this is 

mathematically identical to pulse pair processing.  
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Fig. 3.6.1.8. Bias error in the velocity estimate using different methods. The 
corresponding standard deviations are in Fig. 3.6.1.7.  
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Fig. 3.6.1.9. Standard error in the mean power estimate using different methods. 
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Fig. 3.6.1.10. Bias error in the mean power estimate using different methods. 
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4. Phase Coding 

Last year NSSL and NCAR provided an algorithm recommendation for the first stage of 

range and velocity ambiguity mitigation on the WSR-88D. The algorithm is termed SZ-2 

and will replace the “split cuts” in legacy VCPs. This algorithm is scheduled for 

implementation on the ORDA, and is expected to provide significant reduction of 

obscuration (purple haze) at the lower elevation angles. Although the provided algorithm 

recommendation was extensively tested in a research environment, a number of 

enhancements were investigated in the past year. First, we introduce a few enhancements 

that are critical for the implementation of the SZ-2 algorithm in an operational 

environment. These relate to handling clutter in multiple trips and the use of windows. 

Last, we cover an evolutionary enhancement referred to as double processing. Although 

not critical, this enhancement could significantly improve the algorithm’s performance.  

A functional description of the critical enhancements to the SZ-2 algorithm and errata to 

the June 2004 SZ-2 algorithm recommendation are included in Appendix C. 

4.1. Critical Enhancements to the SZ-2 Algorithm 

4.1.1. Handling clutter in multiple trips 

The June 2004 SZ-2 algorithm included modifications to handle clutter in multiple trips. 

However, those modifications dealt mostly with censoring and not recovering signals in 

those range gates with overlaid clutter (i.e., with clutter in more than one trip). In fact, it 

is the phase coding technique itself that does not work well with clutter in multiple 

overlaid trips because the manipulation of the spectrum to remove clutter from multiple 
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trips destroys the coherence of overlaid signals and precludes their recovery. The June 

2004 SZ-2 algorithm handled this situation by giving up on recovering of data with 

overlaid clutter. In addition, if clutter was with the weak trip, only recovery of the strong 

trip was possible. Therefore, in a situation where most of the gates are presumed to have 

clutter, the June 2004 SZ-2 algorithm could potentially perform worse than legacy 

algorithms since the presence of clutter is solely determined from the clutter filter map.  

It has been reported that at some radar sites the operators incorrectly define clutter censor 

zones that cover all the range gates in a given scan. The effect of this abuse on legacy 

algorithms is noticeable but only in the first trip, since the clutter maps are effectively 

ignored for higher order trips (this is the reported behavior of the legacy RDA and the 

ORDA). Conversely, the June 2004 SZ-2 algorithm implements a “clutter location 

determination” function by looking at all the trips within the clutter map. If there is more 

than one trip with clutter, the weak trip is immediately deemed as unrecoverable; the 

strong trip might be recoverable only if it is much stronger than the sum of the out-of-trip 

powers. With this in mind, let’s look at an example (Figures 4.1.1.1 to 4.1.1.3) in which 

the June 2004 SZ-2 algorithm is run with the “filter everywhere” option. Comparing the 

results from the legacy “split cut” processing and the ones from the June 2004 SZ-2 

algorithm, it is obvious that the performance of the latter is negatively affected by an 

incorrectly-defined clutter map. Looking at the cause for censoring, the plot in Fig. 

4.1.1.4 indicates that most of the censoring occurred due to the location of clutter (i.e., 

due to the presence of clutter in multiple overlaid trips), which confirms the need for a 

“smarter” decision as to the presence of clutter in multiple trips. 
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Fig. 4.1.1.1. Reflectivity field of data collected on the KOUN radar on Oct 08, 2002. 

Widespread echoes extend beyond 250 km. 

 
Fig. 4.1.1.2. Doppler velocity field corresponding to the reflectivity in Fig. 4.1.1.1 

obtained through the legacy algorithm (split cut processing). 
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Fig. 4.1.1.3. Doppler velocity field corresponding to the reflectivity in Fig. 4.1.1.1 

obtained with the June 2004 SZ-2 algorithm. 

 
Fig. 4.1.1.4. Censoring field corresponding to the Doppler velocity field in Fig. 4.1.1.3. 

Reasons for censoring are referenced in the color bar. 
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The proposed solution involves a re-determination of clutter contamination only if the 

clutter map indicates the presence of clutter in multiple trips (i.e., only when the June 

2004 SZ-2 algorithm would fail). The long-PRT powers removed by the GMAP clutter 

filter are used for this.  

The enhanced “clutter location determination” function is given below, where Nc is the 

number of trips with clutter, N is the number of bins in the short PRT, n is the current 

short-PRT bin, and i is the long-PRT bin corresponding to trip l. The clutter map 

corresponding to the current radial is denoted by B; this map can indicate either FILTER 

or BYPASS. Arrays PL and CL correspond to the long-PRT filtered powers and powers 

removed by GMAP, respectively. The threshold KCSR3 is an adaptable parameter with a 

recommended value between 10 and 15 dB. This algorithm starts by performing a 

determination of clutter location based solely on the clutter map; exactly the same that 

was recommended in the June 2004 version. What is different here is that if the number 

of trips with clutter after the preliminary determination is larger than one, the algorithm 

performs a re-determination based on both the clutter map and the clutter-to-signal ratio 

(as determined by GMAP during the long PRT scan).  
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Nc = 0 
For l = 1 to 4 
  i = n + (l – 1)N 
  If B(i) = FILTER 

 There is clutter in trip l 
 Nc = Nc + 1 

Else 
There is no clutter in trip l 

End 
End 
If Nc > 1 

Nc = 0 
For l = 1 to 4 

i = n + (l – 1)N 
   If B(i) = FILTER and CL(i) > PL(i) KCSR3 

There is clutter in trip l 
Nc = Nc + 1 
Else 

   There is no clutter in trip l 
  End 
 End 

End 

As shown in Fig. 4.1.1.5, with this enhancement, the new SZ-2 algorithm performs much 

better with a clutter map that aggressively indicates “filter everywhere”. This 

improvement is realized by effectively “second guessing” the operator-defined clutter 

censor zones if they indicate the presence of clutter in multiple overlaid trips. 
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Fig. 4.1.1.5. Doppler velocity field corresponding to the reflectivity in Fig. 4.1.1.1. 

obtained with the enhanced SZ-2 algorithm. 

Another enhancement is recommended to handle several special cases more efficiently in 

the algorithm. This is, once clutter location is determined, a decision must be made 

regarding how to proceed with the recovery of the two strongest overlaid trips. In the 

June 2004 SZ-2 algorithm recommendation, only a few special cases like this were 

considered. This scheme was revisited this year, and we extended the list of cases that 

require special handling to 12 cases. Note that only obvious cases are considered; those 

that require precise knowledge of the clutter-to-signal ratio for each trip cannot be easily 

identified, since the power removed by GMAP is only a good estimator of clutter power 

for large CSRs (see report 8). The list of cases is presented in the table below. Although 

this list is exhaustive, these represent a very small addition to the algorithm’s 

computational complexity since the detection rules can be implemented with if-then-

else statements and some of the cases listed are very unlikely to occur.  
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In the following table, S, W, and U stand for ‘strong’, ‘weak’, and ‘unrecoverable’ trips; 

Pi (i=0, 1, 2, 3) are the long-PRT filtered powers sorted in descending order; and Qi are 

the long-PRT total powers sorted according to the P’s. 

Clutter 
location* 

Recoverable trips 
based on clutter 

location** 

Number 
of trips 

with 
clutter 

Case 
no. 

S W U 

Condition GCF 
trip 

S W 
0 1      x x 

2 x    S x ? 
if P0 >> Q1  x  3  x  else W x ? 
if P0 >> Q2(3)  x x 

1 

4   x else U x o 
if P0 >> Q1 S x  5 x x  
else    
if P0 >> Q2(3) S x ? 6 x  x else    
if P0 >> Q1 + Q2(3)  x  
elseif P0 >> Q2(3) W x ? 
elseif P0 >> Q1 U x   7  x x 

else     
if P0 >> Q2 + Q3  x x 
elseif P0 >> Q2 U2 x o 
elseif P0 >> Q3 U1 x o 

2 

8   xx 

else    
if P0 >> Q1 + Q2(3) S x  9 x x x 
else    
if P0 >> Q2 + Q3 S x ? 10 x  xx else    
if P0 >> Q1 + Q2 + Q3  x  
elseif P0 >> Q2 + Q3 W x ? 
elseif P0 >> Q1 + Q2 U2 x  
elseif P0 >> Q1 + Q3 U1 x  

3 

11  x xx 

else    
if P0 >> Q1 + Q2 + Q3 S x  4 12 x x xx 
else    

* Strong (S), weak (W), and unrecoverable (U) trips are determined according to the long 

PRT powers. Note that S and W may get swapped according to the short PRT data. 
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** These are potentially recoverable trips. Censoring based on other considerations is 

performed at the end of the algorithm. ‘x’ stands for “recoverable trip”, ‘?’ stands for 

“unable to determine due to possible switching between strong and weak”, and ‘o’ stands 

for “should not prematurely censor weak trip due to potential switch between strong and 

weak trips” 

Note 1: ‘>>’ should involve a threshold that is large enough to obtain acceptable 

estimates of the spectrum width (recall that Thv < Thσv). A value of 10 dB may work. 

Note 2: This table is also valid if only one (tB = −1) or no trips (tA = tB = −1) are 

recoverable. 

4.1.2. Windowing in SZ-2 

It is well known that spectral processing has many advantages over time-domain 

processing. However, the cost to pay is an increase in computational complexity from the 

computation of the spectrum and an increase in errors of estimates due to the use of non-

rectangular windows. In general, the more aggressive the window, the smaller the 

equivalent number of independent samples (Doviak and Zrnić, 1993) and the larger the 

errors of estimates. In earlier reports, we documented that the best window for the SZ-2 

algorithm is the Von Hann window, yielding the best performance in terms of resolution 

for spectral processing and errors of estimates. However, with the introduction of spectral 

ground clutter filters (i.e., GMAP) it was determined (Ice et al., 2004) that a more 

aggressive window such as the Blackman window was needed to achieve the required 

clutter suppression. Therefore, in the June 2004 SZ-2 algorithm recommendation we 

proposed using the Blackman window for all range gates.  
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After familiarizing ourselves with the inner workings of the ORDA signal processor (the 

RVP-8), we realized that it is relatively easy for the RVP-8 processor to use different 

windows at different range locations. Thus, we are revising our initial recommendation 

and proposing to use different windows depending on the presence of clutter. That is, use 

the Von Hann window if there is no clutter to achieve better accuracy of estimates, and 

use the Blackman window in the presence of clutter to achieve the required clutter 

suppression. Without increasing the computational complexity, the gain from this change 

should be noticeable as indicated by figures 4.1.2.1 and 4.1.2.2. 

 

Fig. 4.1.2.1. Standard error and bias of strong and weak trip velocities in the SZ-2 
algorithm using the Blackman window as a function of strong-to-weak trip power ratio 

and strong trip spectrum width for a weak-trip spectrum width of 4 m/s. 
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Fig. 4.1.2.2. Standard error and bias of strong and weak trip velocities in the SZ-2 
algorithm using the Von Hann window as a function of strong-to-weak trip power ratio 

and strong trip spectrum width for a weak-trip spectrum width of 4 m/s.  
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4.2. Double processing for phase coding algorithms 

It has been observed that recovery of the strong-trip velocity is more difficult if the strong 

and weak trip powers are about the same. This is because the strong trip velocity is 

recovered directly, without attempting to remove contamination from the out-of-trip 

echoes. This is evident by the larger errors of estimates observed when the strong-to-

weak trip power ratio is less than 3 dB (Fig. 4.2.1). 

 

Fig. 4.2.1. Standard error of strong and weak trip velocities in the normal SZ-2 algorithm 
as a function of strong-to-weak trip power ratio and strong trip spectrum width for a 

weak-trip spectrum width of 4 m/s. Range of strong-to-weak trip powers is 0 to 10 dB.  

Recovery of the weak-trip velocity is not affected by this because the weak-trip velocity 

is always recovered after notching most of the strong-trip echo with the “processing 

notch filter” (PNF). Thus, if the strong and weak trip powers are about the same, we 

could recover the strong trip velocity in a similar way as we do the weak trip velocity; 

i.e., by means of a PNF. This is termed as double processing, and the processing 

sequence is depicted in the block diagram of Fig. 4.2.2. The upper branch in that figure 
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corresponds to the normal SZ-2 processing; the lower branch proceeds in a similar 

fashion with the strong and weak trips swapped so that both the strong and weak trip 

velocities are estimated after a PNF. 

 

Fig. 4.2.2. Block diagram of double processing for the SZ-2 algorithm. 

 

Fig. 4.2.3. Standard error of strong and weak trip velocities in the double-processing SZ-
2 algorithm as a function of strong-to-weak trip power ratio and strong trip spectrum 

width for a weak-trip spectrum width of 4 m/s and a weak-trip PNF notch width of M/4. 
The range of strong-to-weak trip powers is 0 to 10 dB.  

Performance of double processing is shown in fig. 4.2.3. As stated before, the 

improvement is in the recovery of the strong-trip velocity (compare the left panels of 
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figures 4.2.1 and 4.2.3), the recovery of the weak-trip velocity is the same in both 

algorithms. Performance of double processing depends on the strong-to-weak trip power 

ratio and on the weak-trip PNF notch width. For large power ratios, normal processing is 

preferred over double processing (there is no need to disturb the spectrum if we do not 

have to!). Hence, double processing is to be applied selectively depending on the 

parameters of the overlaid signals. On one hand, the strong-trip PNF notch width is 

traditionally either 3M/4 or M/2 depending on the strong and weak trip numbers. 

However, the weak-trip PNF notch width does not need to be as aggressive. Actually, the 

more replicas that are left after the PNF process, the better the recohering of the out-of-

trip signals. To demonstrate this, performance of double processing was compared to 

normal processing for different values of weak-trip PNF notch width (figures 4.2.4 

through 4.2.7). In these figures a white color indicates that normal processing performs 

better than double processing, a dark color indicates the opposite, and a light gray color 

indicates that both algorithms perform about the same (no significant improvement is 

gained from double processing). It is evident that the smaller the notch width, the larger 

the region in which double processing performs significantly better than normal 

processing. However, we cannot make the weak-trip PNF notch width as small as we 

want, since the goal is to remove at least some contamination from the weak trip. This 

becomes clearer after comparing figures 4.2.6 and 4.2.7, where double processing ran 

with weak-trip PNF notch widths of M/4 and M/8, respectively. The improvement from 

using the latter over the former is negligible. Therefore, from this preliminary analysis we 

recommend a weak-trip PNF notch width of M/4.  
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Fig. 4.2.4. Comparative performance of double processing and normal processing for the 
SZ-2 algorithm as a function of the strong-to-weak trip power ratio and the strong and 

weak trip spectrum widths for a weak-trip PNF notch width of 3M/4. A Dark color 
indicate the double processing performs better than normal processing, a light gray color 
indicates that both techniques perform about the same, and a white color indicates that 
there is no improvement from using double processing (normal processing performs 

better).  
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Fig. 4.2.5. Comparative performance of double processing and normal processing for the 
SZ-2 algorithm as a function of the strong-to-weak trip power ratio and the strong and 

weak trip spectrum widths for a weak-trip PNF notch width of M/2. 

86 



 

Fig. 4.2.6. Comparative performance of double processing and normal processing for the 
SZ-2 algorithm as a function of the strong-to-weak trip power ratio and the strong and 

weak trip spectrum widths for a weak-trip PNF notch width of M/4. 
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Fig. 4.2.7. Comparative performance of double processing and normal processing for the 
SZ-2 algorithm as a function of the strong-to-weak trip power ratio and the strong and 

weak trip spectrum widths for a weak-trip PNF notch width of M/8. 
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To summarize, double processing for SZ-2 improves the recovery of the strong-trip 

velocity for strong-to-weak power ratios less than at least 3 dB for the usual range of 

spectrum width values. A simple rule to invoke double processing could be based on this 

power ratio regardless of other parameters. This would be preferred over more complex 

rules involving such parameters as the spectrum widths of strong and weak trip echoes. It 

is obvious that double processing, as its name implies, would almost double the 

computational complexity of the SZ-2 algorithm. Hence, its benefits will have to be 

weighed against the required additional computational power (if available). As part of 

future work we plan to investigate the performance of double processing in the presence 

of clutter and using adaptive PNF notch widths for both the strong and weak-trip PNFs. 
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Appendix A. Staggered PRT GCF: Intuitive explanation 

Herein we present a heuristic explanation of the ground clutter filtering procedure for the 

staggered PRT.  It compliments the explanations given in section 3 and might help 

readers get a better grasp of the manipulations in the spectral domain.   

Start with the definition: 

• e(nTu) – is a uniform sequence with sample spacing Tu  

• v(nTu) – is the observed part of the sequence through staggered sampling 

• Code(nTu) – is the staggered sample spacing, it starts at T1 

 

Then in the time domain the following holds:   

 v(nTu) = Code(nTu) e(nTu) (A.1) 

             Code(nTu) = 101001010010100.... 

In the frequency domain the Fourier transforms (see Fig. A.1) are  

  FT(v) = FT(Code)∗FT(e) (A.2) 

where ∗ is the convolution operator.  In our case the staggered ratio is 2/3 and the code 

length is 160 = 5•32.   
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5Tu 

Tu 
160 Tu 

Time domain code: 

1/(160Tu) 

32/(160Tu) = 1/5Tu 

1/Tu 

Frequency domain, DFT of the code: 

Fig. A.1  Time domain representation of the code and its discrete Fourier transform.  The 
pulses in the time domain correspond to 1s and the basic time unit is Tu.   

 

In Fig. A.1, is the code sequence of 1s and 0s over a time length of 160 Tu.  The Fourier 

transform of the code at the bottom of the figure depicts five spectral lines.  The total 

frequency span (Nyquist interval) equals the reciprocal of the basic time unit 1/Tu. The 

spectral coefficients are spaced by 1/(160 Tu) and most are zero. The basic staggered 

indicator 10100 of length five repeats periodically 32 times within the total code length of 

160 Tu.  Therefore, the code has strong spectral lines separated by 1/(5Tu) or 32 spectral 

coefficients.  In the figure, magnitudes of the spectral lines are drawn (absolute values of 

voltages), and it is important to remember that the coefficients are complex and have 

associated phases.  
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It is obvious that the v(nTu) is the time representation of the code (A.1) if e(nTu) is a unit 

constant, and hence the Fourier transform of v(nTu) will be the transform of the code. If 

e(nTu) is an arbitrary constant; then, the transform of its coded rendition v(nTu) will be a 

scaled version of the code transform.  Moreover, if e(nTu) is a pure sinusoid centered on 

one of the line frequencies; then, the transform of the coded version would have a line 

centered at the frequency of the sinusoid and four scaled replicas spaced by 1/(5Tu).  That 

is, the spectrum would be the same as for the code (at DC) but shifted to the line 

frequency.  Hence, relative phases and magnitudes of the spectral coefficients would be 

preserved!  This allows separation of different sinusoids if they are offset from each other 

by 1/(5Tu) or 32 spectral coefficients.   

In its essence, clutter filtering of staggered sequence can be broken into two regimes.  

One is if the weather and clutter signal overlap near zero frequency, the other is if the 

overlap is between the line frequency of the weather signal and a sideband of the clutter.  

To identify which case it is, one first filters the clutter and then computes the mean 

velocity from the residue.  This velocity tells in which 1/5 of the spectrum the weather 

contribution is.  Then, a correction is made to restore the weather signal in regions of 

overlap with the clutter sidebands. 

We illustrate the process on a case of a single clutter component (at 0 frequency) and a 

weather component at 3/(5Tu).  It is clear that the concept is applicable to several 

components; hence, extension to other than line spectrum is straightforward. 

For illustration, let the weather component of a uniform sequence have a Fourier 

transform W (a complex number, or scaling factor that represents amplitude and phase of 

97 



the sinusoid) at frequency 3/(5Tu).  Similarly the ground clutter component at zero 

frequency is G (complex). The known normalized spectrum of the code has 160 

coefficients of which only five (spaced by 32 coefficients) differ from zero.  Let’s form a 

vector of these normalized coefficients  

  cn = (c0, c1, c2, c3, c4)T. (A.3) 

The spectrum of the coded clutter is then G cn (Fig. A.2). Similarly, the spectrum of the 

coded sinusoid is W cn-3, where cn-3 is a cyclic shift of cn by 3 units.  The composite 

measured spectrum at values different from zero is  

 V = cn G + cn-3 W. (A.4) 

In practice, V = (V0, V1, V2, V3, V4)
T is measured (observed) and cn is known.  The 

cyclic shift and the complex scaling G and W are not known.   

Clutter  cn G 

Weather cn-3 W 

 
Fig. A.2  Doppler spectra of clutter (a DC component) and a sinusoidal weather 

component obtained from the staggered PRT sequence.  Stagger ratio is 2/3 and the 
number of non zero samples is 64.  
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As explained in section 3 the filtered component is given by 

       V
f  

=  V – c
n 

T* V c
n
. (A.5) 

Substitution of (A.4) produces 

        Vf = (c
n
G + cn-3W) – cn

T*(cn G + cn-3 W)cn 

     = cn-3 W– cn
T*cn-3cn W.     (A.6) 

Recall that Vf  is a five dimensional vector of which each component corresponds to one 

spectral coefficient. Clearly, after filtering the clutter the spectral lines have been 

removed from V and the remaining vector (five lines) are scaled versions of the signal W.  

The normalized code spectrum cn is known, but the cyclic shift n-3 is not.  To find it, one 

uses magnitude deconvolution and autocovariance processing.  Knowing n-3 allows 

several ways to obtain W.  For instance, a possible solution for G and W can be obtained 

from (A.3) as  

 V0 = c0 G + c2 W 

  V1 = c1 G + c3 W, 

but that is not the recommended approach.  Rather, (A.6) is used directly to give 

 Vf3 = [c2 - (c0c2 + c1c3 + c2c4 + c3c0 + c4c1) c0]W.  

99 



Next, a slight generalization to other staggered ratios is outlined.  Consider a stager ratio 

m/n, where m and n are integers, and assume that T1 = mTu and T2 = nTu.  Then, let the 

two staggered pulses (the pair) repeat L times so that the total code length is L(m+n)Tu.   

The discrete Fourier transform of the code spectrum will have L(m+n) coefficients of 

which (m+n) are non zero.  That is, there are (m+n) lines and the spacing between 

adjacent lines is L points.  The Nyquist interval is 1/Tu and it increases if m and n increase 

but the number of spectral lines also increases.  Suppose that (T1 + T2) is kept constant 

and (m+n) varies.  Then the spacing of the non-zero lines would be constant and equal to 

(T1 + T2)-1.  That is, although there would be more non-zero spectral lines, the total 

Nyquist interval would proportionally increase so that the net separation of spectral lines 

would remain unchanged. 
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Appendix B. Staggered PRT Spectral GCF: Functional description 

Assumptions:  

(a) The switching sequence is [T1, T2, T1, T2, …]. 

(b) T1 < T2 , (T1 /T2 ) = κ = 2/3, and (T2 - T1 ) = Tu . 

(c) M is the number of staggered PRT samples. 

(d) N = 5M /2, number of DFT coefficients. 

(e) Ground clutter is present. 

(f) No overlaid signal. 

Inputs: 

 (a)  complex time series,  gi, i = 1, 2, 3, ..., M. 

 (b)  ground clutter filter map. 

 (c)  M, T1, T2, radar frequency, radial, range, p_noise (receiver noise).   

Pre-compute: the following are pre-computed and supplied to the algorithm. These need 

to be recomputed only if M changes. 

 (a) Window coefficients for N points, bi , i = 1, 2, 3, ..., N. 

 (b) Window power loss correction factor, 

  ∑=
N

ib
N

corwin
1

2
10 )||1(log.10_  (dB). 

  {win_cor = 4.1924(dB) for vonHann, 5.2311(dB) for Blackman}  

            (b) Re-arranged (5x5) convolution matrix, Cr.  

 (c) Magnitude de-convolution matrix, {abs(Cr)}-1 . 

 (d) Matrices Cf1, and Cf2. 

 (e) Matrix Z 
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Z = [1111...(M/4),ξ2,ξ2,ξ2...(M/2),ξ3,ξ3,ξ3,...(M)   ,ξ2,ξ2,ξ2...(M/2),111...(M/4)] 

 {the numbers in ( ) brackets indicate number of time to repeat the element.} 

{... 

How to compute Cr , Cf1, and Cf2:  

(1) form code sequence of length 5 only, [10100]. 

(2) take x = DFT([10100]), normalize power to unity (divide each element 

by the square root of the total power in the spectrum) 

(3) form matrix Cr with these 5 coefficients as the first column, and form 

the second and subsequent columns by down shifting cyclically by one 

coefficient at a time.  

(4) Cf1, and Cf2 are computed using 1st and 5th columns, C1, and C5 of Cr. 

Cf1= C1 C1
t* and Cf2 = C5 C5 t*                     

...} 

The clutter filter algorithm: {explanation/details is given in {} brackets.} 

Input time series, radial, range: 

if clutter is not present for the range gate {determine from the clutter filter map} 

go to the pulse pair algorithm  

{given in report 7, delete the clutter filtering part}. 

elseif overlaid signal present  

go to the pulse pair algorithm (report 7) 

 else  {ground clutter present and no overlay} apply the algorithm below: 
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1.  Form derived time series,  

 {insert zeros: e = [g1, 0, g2, 0, 0, g3, 0, g4, 0, 0, ..., gM, 0, 0] } 

2.  Apply window {multiply, e.*b = ei*bi ; i=1,2,...N}  - Blackman window 

{if the CNR is known from the clutter map, one may select appropriate optimum 

window. It is also possible to estimate an approximate CNR as in step # 4 below 

and then select an optimum window. However, this involves DFT computation 

twice.} 

3. Compute V = DFT(e.*b).  {V is a row vector} 

4. Compute approximate CNR: 

 CNR_aprox = [(|V1 |2 + |V2 |2 + |VN|2 ) (5/2)(5/2)] / (N • p_noise). 

{The two 5/2 factors are to account for: (a) the inserted zeros, and (b) the spread 

of the clutter spectral power. The staggered PRT spectrum has 5 unequal replicas, 

with the main one having 2/5 of the power. The N in the denominator is needed 

because the DFT in Matlab does not normalize the spectra.} 

5. Determine clutter filter width parameter, q. 

{note: the following is obtained using Blackman window on different time series 

records (M=64) of the radar data of 4/6/03 on CD - the optimum q depends on the 

CNR, window function, and M}  

               CNR_aprox < 50 dB; q = 3, 

            50 dB < CNR_aprox < 70 dB;  q = 4, 

 70 dB < CNR_aprox < 90 dB;  q = 5, 

   CNR_aprox > 90 dB;  q = 6. 

 {one may select an optimum  combination of window and q - see section-2}  
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6. Compute clutter filter matrices, If1, If2, I1, I2. {all are row matrices} 

 If1 = [1,1,... (q times),0,0, ...(M/2-q times) ],  

            If2 = [0,0,...(M/2-q+1 times),1,1,...(q-1 times)]. 

I2 = [(If1+ If2),... repeat 5 times],            

 I1 = complement of I2, (interchange 0s and 1s). 

{[If1+If2] has M/2  elements (first q and last q-1 elements are ones and the rest 

zeros), and I1 and I2 have N elements each.} 

7. Row-wise re-arrange V into a (5x32) matrix Vr. {see Eq. 3.15} 

8. Filter the clutter: compute the spectrum, Vf, after the clutter is filtered    

 Vf = Vr - Cf1 Vr If1   - Cf2 Vr If2    

9. Magnitude de-convolution 

 Er = abs( [abs{Cr}]-1 abs{Vf}).     

10. Row-wise unfold Er into a single row matrix, Es. 

11. Compute the autocorrelation R(Tu), and initial velocity 

 ∑ −=
N

Nkj
sku eE

N
TR

1

/)1(22||1)( π  

 {Esk are the elements of Es }   

 )];(arg[ u
a

initial TRvv
π
−

=           
u

a T
v

4
λ

= . 
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12.  Compute row matrix Iv { M/2 ones centered on vinitial } 

   ;
20 ⎥

⎦

⎤
⎢
⎣

⎡−
=

a

initial

v
Nvroundk    if  k0 < 1 , k0 = k0 + N, 

              if  k1 < 1 , k1 = k1 + N, ;

;

14/01 +−= Mkk

                   if  k2 > N , k2 = k2 - N, 4/02 Mkk +=

{k0 is the DFT index corresponding to vinitial , and k1 to k2 are M coefficients 

centered on mean velocity. The function round gives the nearest integer. If k1 > 

k2, the ones will span from k1 to N, and 1 to k2}  

 Iv = [0,0, ...,1,1,1,...,0,0,...]  

{In the N element row matrix,  

if  k1 < k2,  element # k1 to k2 are ones and the rest are zeros in Iv.  

if  k2 < k1,  element # (k2+1) to (k1 -1) are zeros and the rest are ones in Iv.}  

13. Interpolate the elements for the velocity region-1 in Es. 

Let  s1 = |Es(q+1)|2, and  s2 = |Es(N-q+1)|2, the (q+1)th , and (N-q+1)th element 

powers of Es. The elements in the velocity_region-(1) are replaced with 

interpolated values from s1 and s2. 

 Es(k) = [s2 + (s1 - s2) (q + k - 1) / 2q]1/2,     k = 1 to q; 

 and      Es(k) = [s2 + (s1 - s2) (q + k - 1 - N) / 2q]1/2,  k = N-q+2 to N. 

14. Compute the corrected spectrum, Ec. 

 Ec = Es • I1 + Es • I2 • Iv • Z  

{all are row matrices, and the • represents the element by element multiplication 

(•* of MATLAB} 
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15. Re-compute the autocorrelation R(Tu) using Ec, and compute bias corrected mean 

velocity, v,  from the phase of the autocorrelation. The mean power, p, is also computed 

from this spectrum. Add win_cor to p mean power to correct for the loss due to window. 

Compute reflectivity, z, in dBZ units. (need syscal, noise, range, and atmospheric 

attenuation)   

16. Retain only M coefficients centered on the mean velocity, v, and delete the rest from 

Ec.  

;
20 ⎥

⎦

⎤
⎢
⎣

⎡−
=

av
vNroundk     if  k0 < 1 , k0 = k0 + N, 

;12/01 +−= Mkk        if  k1 < 1 , k1 = k1 + N, 

;2/02 Mkk +=            if  k2 > N , k2 = k2 - N. 

if  k1 < k2, set the elements of Ec from 1 to (k1-1), and (k2+1) to N, to zero to get 

Ecm.  

if  k2 < k1, set the elements of Ec from (k2 +1) to (k1 -1)  to zero to get Ecm.  

17. Compute spectrum width from Ecm (modified spectrum) using the width estimator 

(Eq. 6.37 of Doviak and Zrnić, 1993). Note that the R(Tu) and the mean power, S, used in 

that expression has to be computed from Ecm, and not from Ec.   

18. Output the spectral parameters, p (or compute reflectivity z), v, and w. 

19. Go to the next data set. 
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Appendix C. SZ-2 Critical Enhancements and Errata: Functional 

description 

• Page 5, table of censoring thresholds.  
Add KCSR3 with a recommended value of 10 to 31.6228 (10 to 15 dB). 
Add KIGN  with a recommended value of 10 to 100 (10 to 20 dB). 
Disclaimer: these thresholds have not been thoroughly tested and may need refinement. 
Remove K1 and K2. 
 
• Page 6, step 1. 
Add t as an output from this step. 
 
• Page 7, step 1. 
If tA = −1 and tB = −1, set tC = −1 and the algorithm continues at step 6. 
 
• Page 7, step 2.  
Add PL, CL, and t as inputs to this step.  
 
Replace step 2 with the following: 
In the case of overlaid clutter, an additional check is made using the long PRT powers to 
prevent algorithm failure from incorrectly defined maps. 
 
(Determine trips with clutter) 
nC = 0 
For 0 < l < 4 

If n + lN < NL 

 (Within the long-PRT range) 
  If B(n + lN) = FILTER 

(There is clutter in the l-th trip; therefore, store clutter trip number and 
increment clutter trip count) 

   clutter_trips(nC) = l 
   nC = nC + 1 
  End 
 End 
End 
If nC > 1 

(According to the Bypass map there is overlaid clutter; therefore, re-determine trips 
with clutter using both Bypass map and long-PRT powers) 

 nC = 0 
 For 0 < l < 4 

 If n + lN < NL 

  (Within the long-PRT range) 
   If B(n + lN) = FILTER and CL(n + lN) > PL(n + lN) KCSR3 

(There is clutter in the l-th trip) 
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    clutter_trips(nC) = l 
    nC = nC + 1 
   End 
  End 
 End 
End 
 
(Handle clutter) 
If nC = 0 
 (No clutter anywhere; therefore, clutter filter will not be applied) 
 tC = −1 
 
ElseIf nC = 1 
 (Non-overlaid clutter) 
 tC = clutter_trips(0) 
 If tC ≠ tA 

  (The strong trip does not contain clutter)  
  If tC = tB  
   (The weak trip contains clutter) 
   If P(0) > Q(1) KIGN 

(Strong signal is KIGN-times larger than the total signal in the trip with 
clutter; therefore, clutter can be ignored and the weak signal is not 
recoverable) 

    tB = −1 
    tC = −1  
   End 
  Else 

(One of the unrecoverable trips contain clutter) 
   If P(0) > Q[r(tC)] KIGN 

(Strong signal is KIGN-times larger than the total signal in the trip with 
clutter; therefore, clutter can be ignored) 

    tC = −1  
   End 
  End 
 End 
 
ElseIf nC = 2 
 (Overlaid clutter in two trips) 
 CwS = FALSE    (clutter with strong signal) 
 CwW = FALSE (clutter with weak signal) 
 CwU = FALSE (clutter with unrecoverable signals) 
 For 0 < l < nC 
  If clutter_trips(l) = tA 
   (The trip with the strong signal contains clutter) 
   CwS = TRUE 
  ElseIf clutter_trips(l) = tB 
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   (The trip with the weak signal contains clutter) 
   CwW = TRUE 
  Else 
   (One of the trips with unrecoverable signals contains clutter) 
   CwU = TRUE 
   tCU = clutter_trips(l) 
  End 
 End 
 If CwS and CwW  
  (Clutter is with the strong and weak trips, weak signal cannot be recovered)   
  tB = −1 
  If P(0) > Q(1) KIGN 
   (Trip with weak signal can be ignored) 
   tC = tA 
  Else 
   (None of the trips can be recovered, ignore clutter) 
   tA = −1 
   tC = −1 
  End 
 ElseIf CwS and CwU  

(Clutter is with the strong and one of the unrecoverable trips) 
  If P(0) > Q[r(tCU)] KIGN 
   (Trip with unrecoverable signal can be ignored) 
   tC = tA 
  Else 
   (None of the trips can be recovered, ignore clutter) 
   tA = −1 
   tB = −1 
   tC = −1 
  End 
 ElseIf CwW and CwU  

(Clutter is with the strong and one of the unrecoverable trips)   
  If P(0) > {Q(1) + Q[r(tCU)]} KIGN 
   (All trips with clutter can be ignored and weak signal cannot be recovered) 
   tB = −1 
   tC = −1 
  ElseIf P(0) > Q[r(tCU)] KIGN 
   (Trip with unrecoverable signal can be ignored) 
   tC = tB 

  ElseIf P(0) > Q(1) KIGN 
   (Trip with weak signal can be ignored and weak signal cannot be recovered) 
   tB = −1 
   tC = tCU 
  Else 
   (None of the trips can be recovered, ignore clutter) 
   tA = −1 
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   tB = −1 
   tC = −1 
  End 
 ElseIf CwU  

(Clutter is with both of the unrecoverable trips)   
  If P(0) > {Q(2) + Q(3)} KIGN 
   (All trips with clutter can be ignored) 
   tC = −1 
  ElseIf P(0) > Q(2) KIGN 

(One of the trips with unrecoverable signals can be ignored) 
   tC = t(3) 
  ElseIf P(0) > Q(3) KIGN 

(One of the trips with unrecoverable signals can be ignored) 
   tC = t(2) 
  Else 
   (None of the trips can be recovered, ignore clutter) 
   tA = −1 
   tB = −1 
   tC = −1 
  End 
 End 
 
ElseIf nC = 3 
 (Overlaid clutter in three trips) 
 CwS = FALSE 
 CwW = FALSE 
 CwU = FALSE 
 For 0 < l < nC 
  If clutter_trips(l) = tA 
   (The trip with the strong signal contains clutter) 
   CwS = TRUE 
  ElseIf clutter_trips(l) = tB 
   (The trip with the weak signal contains clutter) 
   CwW = TRUE 
  Else 
   (One of the trips with unrecoverable signals contains clutter) 
   CwU = TRUE 
   tCU = clutter_trips(l) 
  End 
 End 
 If CwS and CwW and CwU  
  (Weak trip is unrecoverable) 
  tB = −1 
  If P(0) > {Q(1) + Q[r(tCU)]} KIGN 
   (Trips with weak and unrecoverable signals can be ignored) 
   tC = tA 
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  Else 
   (None of the trips can be recovered, ignore clutter) 
   tA = −1 
   tC = −1 
  End 
 ElseIf CwS and CwU  
  If P(0) > [Q(2) + Q(3)] KIGN 
   (Trips with unrecoverable signals can be ignored) 
   tC = tA 
  Else 
   (None of the trips can be recovered, ignore clutter) 
   tA = −1 
   tB = −1 
   tC = −1 
  End 
 Else  
  If P(0) > [Q(1) + Q(2) + Q(3)] KIGN  
   (All trips with clutter can be ignored and weak trip is unrecoverable) 
   tB = −1 
   tC = −1 
  ElseIf P(0) > [Q(1) + Q(2)] KIGN 

(Trips with weak and one unrecoverable signal can be ignored and weak trip 
is unrecoverable) 

   tB = −1 
   tC = t(3) 
  ElseIf P(0) > [Q(1) + Q(3)] KIGN 

(Trips with weak and one unrecoverable signal can be ignored and weak trip 
is unrecoverable) 

   tB = −1 
   tC = t(2) 
  ElseIf P(0) < [Q(2) + Q(3)] KIGN 
   (Both trips with unrecoverable signals can be ignored) 
   tC = tB 
  Else 
   (None of the trips can be recovered, ignore clutter) 
   tA = −1 
   tB = −1 
   tC = −1 
  End 
 End 
 
Else (nC = 4) 
 (Overlaid clutter in four trips) 
 (Weak trip is unrecoverable) 
 tB = −1 
 If P(0) > [Q(1) + Q(2) + Q(3)] KIGN 
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  (Trips with weak and both unrecoverable signals can be ignored) 
  tC = tA 
 Else 
  (None of the trips can be recovered, ignore clutter) 
  tA = −1 
  tC = −1 
 End 
End 
 
• Page 9, step 3 
We could use the Hanning (a.k.a. von Hann) window when tC = −1. (Q: Is that how 
ORDA will operate?) 
If tC = −1, set kGMAP = 0 and the algorithm continues at step 6. 
 
• Page 17, step 21 
Add t as an input to this step.  
 
The following segment of code should be added at the beginning: 
 
For 0 < l < 4 
 If tC = t(l) 
  PQ(l) = P(l) 
 Else 
  PQ(l) = Q(l) 
 End 
End 
 
The P’s involved in SNR* censoring (pages 17 and 18) should be replaced with PQ. 
 
• Page 18, step 21 
The last ‘If’ (end of this page) should be: If wW/2va,L > wn,max 
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